
 1

U.S. PATENT APPLICATION

Title

J. Patrick’s Ladder

A Machine Learning Enhancement Tool

an Architecture for Combining

Convolutional Neural Networks and Association Memory Matrices

to Reduce Machine Learning Training,

to Reduce Machine Execution Time, and

 to Produce Machine Intra-layer Connections

Inventors

James P. LaRue and Denise S. LaRue

 20 Ravenna Avenue

Hanahan, South Carolina

 2

Background of the Invention

The invention that is to be described in this provisional patent is constructed from a combination

of two distinct types of machine learning methods; a convolutional neural network and an

associative memory matrix. By recognizing that a neural network is a logic based device and by

interpreting associative memory as an intuitive based device, this invention can be said to

emulate the intra-action and the inter-action of the cognitive processes of the left-brain and right

brain. The invention is a soft-ware based implementation that (1) reduces the long training times

by a full order of magnitude, (2) reduces the execution time to reach a decision by a full order of

magnitude, and (3) produces beneficial intralayer and interlayer connections.

The implementation of this joint processing architecture is designed to take an existing hierarchy

of stepped based processes, add next to it a parallel hierarchy of associative memory processes,

and then connect the two processes by another set of associative memory processes. The final

construction can be visualized as two vertical rails connected with a set of horizontal rungs

which motivates the name to this invention: J. Patrick’s Ladder. Figure 1 gives the visual outline

for the joint processing architecture. The part of the figure that is enclosed by the dash-lined box

indicates the main part of the invention. It is the purpose of this paper to describe how the device

was built and how it can be implemented as a machine learning enhancement tool.

Several references are given at the end of this paper in the form of patents and published papers.

These references are (roughly) split into two groups; one group for neural networks (NN) and

one group for associative memory (AM). There is a third group called Both.

A diagram for a basic neural network (NN) is given in Figure 2. There is an input U, two sets of

weights and biases and an output Y. The weights and biases weave the input to the output. Two

equations are given that show the updating process as the process iterates. The equation for Y is

shown and serves to produce a number. This number is compared to a desired number; usually in

the form of a classification vector. In general there are several inputs matched with several

desired outputs. The error curve tracks the trajectory towards an acceptable error threshold.

There is no deterministic approach to get to the threshold immediately; it ‘just happens’ with the

aid of Paul Werbos and his insightful thesis whose subject was the application of

 3

backpropagation to artificial NNs. The point of Figure 2 is to show that in order to get from

Layer U to Layer Y a set of weights are trained in order to carry out that task. The purpose of the

weights is to add a greater capacity for correlation over that of simply comparing U to Y. The

idea of adding layers between U and Y is rooted in the desire to emulate human cognitive

processes. A diagram for a basic associative memory (AM) matrix is given is Figure 3. The

diagram shows an example with two input/output (I/O) pairs A1/B1 and A2/B2. These two pairs

start out in binary form but are transformed into polar form into the corresponding pairs X1/Y1

and X2/Y2. An AMM is formed by summing the outer products of the two polar pairs. The

matrix M is given on the right. This matrix takes the place of the weights and biases of Figure 2.

The only training, so to speak, is the forming of the outer products. The idea is to apply A1, or a

noisy version thereof, to the matrix M whereupon the strong association embedded within M

would draw the output to B1. The term Bidirectional Associative Matrix (BAM) comes from the

fact that this output can in turn be applied to the transpose of M whereupon the new output

should approximate A1. The back-and-forth process can be repeated until a so-called resonate

pair forms.

In general the idea of forming associations between I/O pairs is well founded; only the way in

which the M matrix is formed has issues with stability which has led to other approaches such as

the Adaline method of Bernard Widrow and Ted Hoff. The point of Figure 3 is to show that the

I/O pairs themselves form the AM connection matrix in contrast to the derived weights and

biases of the NN.

The NN process is used to demonstrate a necessary component of the overall process and make-

up of J. Patrick’s Ladder. In essence, the NN is only an auxiliary part of the invention which is

the reason the dash-line box in Figure 1 does not include the NN. Rather, the main part of the

invention is the novel two-fold implementation of the AM construct in the way of a parallel (to

the NN) process that may be described as demonstrating an intuitive sense that facilitates (1)

faster learning, (2) faster execution, and (3) intra-layer information sharing.

For the remainder of this paper and in order to provide a clear example of what this invention is

capable of doing, the number of I/O object pairs learning will be set to ten throughout this paper.

 4

The specific neural network to be used for demonstration is the convolutional neural network

(CNN) and the specific type of associate memory will follow the additive model which will be

referred to as the Associative Memory Matrix (AMM). Note that another common name for

AMM is Bidirectional Associative Memory (BAM). This paper will use AMM.

A generic outline of a CNN process is given in this background section as opposed to giving it in

the summary of invention section. The outline below is the process step filler to the left rail of

Figure 1. The CNN processes are unidirectional processes which are indicated by the pairs of

downward pointing arrows along the left rail.

[OL1] For this Generic CNN Process outline, 21 steps are listed.

Given Layer 1

 1. The initial input Object/Image is a 28x28 matrix of numbers called L1

Compute Layer 2 with the following process (labeled P12)

 2. Apply 2D Convolution of L1 with twelve 15x15 filters

 3. Apply Tanh

 4. Downsample by four

 5. Multiply by weights

 6. Add biases

 7. Tanh compress

 Layer 2 output consists of twelve 14x14 images and is called L2

 Compute Layer 3 with the following process (labeled P23)

 8. Apply 2D Convolution of L2 with select sets of 5x5 filters

 9. Apply Tanh

 10. Downsample by four

 11. Multiply by weights

 12. Add biases

 13. Tanh compress

 5

 Layer 3 output consists of sixteen 5x5 images and is called L3

 Compute Layer 4 with the following process (labeled P34)

 14. Apply 2D Convolution of L3 with select sets of 5x5 filters

 15. Apply Tanh

 16. Output one hundred twenty 1x1 images

 Layer 4 output is a 120x1 vector and is called L4

Compute Layer 5 with the following process (labeled P45)

 17. Multiply L4 output with weight matrix

 18. Apply Tanh

 Layer 5 output is a 200x1 vector and is called L5

Compute Layer 6 with the following process (labeled P56)

 19. Multiply L5 output with weight matrix

 20. Apply Tanh

 Layer 6 output is a 10x1 vector and is called L6

 21. From L6 output, the classification decision is based on the position of maximum value

This concludes the background to this invention. The invention will show how the CNN and the

AMM processes are brought into a dependent relationship; one that appears to be very beneficial.

Although the immediate application is to pattern recognition with respect to the MNIST data

base of handwritten numeral 0-9, it is envisioned that it will also apply to other hierarchical

systems that (1) classify human behavioral performance via EKGs, EEGs, and EOGs, (2) classify

large clusters of data sets, i.e. Big Data, (3) carry out iterative hierarchical algorithms in the

domain such as RF, Acoustics, and Geophysics and (4) monitor network traffic using Open

System Interconnection (OSI) architecture. In short, it is envisioned that the J. Patrick’s Ladder

construct will apply to any hierarchical and logic based machine learning class process.

 6

Summary of the Invention

This part of the provisional patent will summarize the two main components to the invention of

J. Patrick’s Ladder. The ladder is a software based hierarchical architecture of two rails and a set

of rungs. The left rail is a software based CNN process; like the one given in [OL1]. The right

rail is a software based AMM process shown below in [OL2]. The rungs are a software based

series of connectors between a CNN output and an AMM output at the same layer in the

hierarchy. The emphasis of this summary is on implementing an AMM rail in parallel to a CNN

and to show how an AMM can be implemented as an intra-layer connector to the CNN system.

In contrast to the CNN processes outlined above, these AMM processes are a core part of the

invention. As already stated, the AMM process depends on a trained CNN process. The

formation of the AMMs is to be given in the details section of this paper. The AMMs for both

the rail and the rungs are bidirectional. This fact is indicated by the pairs of arrows pointing in

opposite directions both along the right rail and along the rungs. There are three outlines given

below. The first two describe the long and short versions of the AMM process associated with

the right rail of Figure 1. The third outline describes the intra-layer (IL) connections via the

rungs of the ladder.

[OL2] For the AMM Process outline parallel to the CNN, 7 steps are listed (long version)

Given the same 28x28 matrix in L1 from the CNN process

 1. The matrix is reshaped into a single 784x1 vector and is called V1

Compute Layer 2 output

 2. Multiply V1 by the M12 matrix to be described in the details section

 Layer 2 output is a 2352x1 vector and is called V2

Compute Layer 3 output

 3. Multiply V2 by the M23 matrix to be described in the details section

 7

 Layer 3 output is a 400x1 vector and is called V3

Compute Layer 4 output

 4. Multiply V3 by the M34 matrix to be described in the details section

 Layer 4 output is a 120x1 vector and is called V4

Compute Layer 5 output

5. Multiply V 4 by the M45 matrix to be described in the details section

Layer 5 output is a 200x1 vector and is called V5

Compute Layer 6 output

6. Multiply V5 by the M56 matrix to be described in the details section

Layer 6 output is a 10x1 vector and is called V6

7. From Layer 6 output, the classification is based on the position of maximum value

[OL3] For the AMM Process outline parallel to the CNN, 3 steps are listed (short version)

Given the Layer 1 28x28 matrix called L1 from the CNN process

 1. The matrix is reshaped into a single 784x1 vector and is called V1

Compute a matrix linking Layer 1 to Layer 6

 2. Let M16=M12*M23*M34*M45*M56

Compute Layer 6 (directly from Layer 1)

 3. Multiply Layer 1 vector by the M16 matrix

 Layer 6 output is a 10x1 vector and is called V6

4. From Layer 6 output, the classification is based on the position of maximum value

 8

[OL4]. For the AMM process as a series of intra-layer matrices (ILM) connecting the two

rails.

The IL processors are bidirectional AM matrices that connect the relative layer positions of the

left CNN rail to the right AMM rail, i.e., the ILM processors are the rungs to the ladder. A layer

output on one rail can move horizontally to a corresponding layer output on the other rail. The

ILMs are given as:

ILM22, the bidirectional connector for L2 of the CNN to V2 of the AMM

ILM33, the bidirectional connector for L3 of the CNN to V3 of the AMM

ILM44, the bidirectional connector for L4 of the CNN to V4 of the AMM

ILM55, the bidirectional connector for L5 of the CNN to V5 of the AMM

ILM66, the bidirectional connector for L6 of the CNN to V6 of the AMM

Note: There is no need for ILM11 since L1 and L2 contain the same data.

Description of drawings

Figure 1- A joint processing architecture named ‘J. Patrick’s Ladder’. It shows the left rail as the

feed-forward convolutional neural network (CNN) process and the right rail as the bidirectional

associative memory matrix (AMM) process. The rungs between the rails form the intra-layer (IL)

connections. The CNN can be replaced with one or more AMMs to better represent how the

cognitive process works..

Figure 2- Shows how a basic neural network (NN) is drawn along with the weights and biases

that connect one layer to the next, the update formulas, an output formula where the hyperbolic

tangent function is used to limit the output, and an error curve.

 9

Figure 3- How the basic associative memory matrix (AMM) is constructed from two sets of

input/output pairs X1/Y1 and X2/Y2.

Figure 4- A detailed look at both processes connecting Layer 1 to Layer 2 to emphasize the

logical steps of the CNN in contrast to the single association step of the AMM.

Figure 5- A diagram to emphasize that while the CNN must go through all the layers in

hierarchical fashion, the AMM process can be formed into one single matrix by multiplying the

five matrices, M12-M56, in Figure 1. Execution times are given. The ability to take a multilayer

neural network and convert it into a single layer neural network is testament to its ability to

compress or ‘zip’ multiple layer systems.

Figure 6- A visual of 1000 decision vectors from: (A) an ideal system, (B) a CNN system, (C) a

non-stable AMM system, and (D) a stable AMM system. The goal is to attain an ideal staircase

appearance.

Figure 7- The plots for the CNN and the AMM for the number of training iterations vs. the

percentage correct. 1000 iterations take approximately 60 minutes of training time. The 6 minute

marker indicates 200 iterations.

Detailed Description

This section will describe the details for forming the AMMs which, as has been stated before, are

dependent on the CNN processes. The description is broken into two parts. Part 1 describes the

process of initialization of the AMMs using the CNN output layers. Part 2 describes the

execution of the system and test results are given as well.

Part 1is broken into four sub-parts, 1A-1D. These four sub-parts show: (Part 1A) how the V1-V6

vectors are initially formed, (Part 1B) how the initial M12-M56, and M16 matrices are formed,

(Part 1C) how the initial matrices are combined to form the so-called additive model; a term

 10

coined by Stephen Grossberg and John Hopfield, and (Part 1D) how the additive matrices are

stabilized. These are the matrices that form the right rail. It is important to note that Parts 1A-1C

are strictly for initialization of the matrices in Part 1D. Once the initialization is complete and the

execution of the testing process begins, the vectors V2-V5 can be solely derived from the AMM

process and not from the CNN process.

Note that while V1 and L1 are always the same numerically, the vectors L2 and V2, L3 and V3,

L4 and V4, L5 and V5, and L6 and V6 are not the same.

The purpose of Part 2 is to tie all the ideas promoted in the paper thus far into a fluid operational

implementation of the invention. Some processing results are given as well.

Part 1 Training the system

[OL5] Part 1A: This is how to transform the CNN layers into AMM vectors in Figure 2

1. From Layer 1 reshape the 28x28 Object Image L1 into a 784x1 vector forming the initial V1

2. From Layer 2 first reshape each of the twelve 14x14 images of L2 into twelve 196x1 vectors,

then concatenate the twelve vectors into a single 2352x1 vector forming the initial V2

3. From Layer 3 first reshape each of the sixteen 5x5 images of L3 into sixteen 25x1 vectors,

then, concatenate the sixteen vectors into a single 400x1 vector forming the initial V3

4. From Layer 4, keep the 120x1 vector of L4 as is forming the initial V4

5. From Layer 5, keep the 200x1 vector of L5 as is forming the initial V5

6. From Layer 6, keep the 10x1 vector of L6 as is forming the initial V6

 11

[OL6] Part 1B: Forming the basic AMM

From the six vectors V1-V6 representing the six output layers of the AMM process, five initial

AMMs are to be formed. The dimensions of the matrices are not part of this claim, but are

guidelines for producing a system capacity to discriminate between objects during operation.

Let:

 M12 = V1xV2
T
, dimension 784x2352

 M23 = V2xV3
T
, dimension 2352x400

 M34 = V3xV4
T
, dimension 400x120

 M45 = V4xV5
T
, dimension 120x200

 M56 = V5xV6
T
, dimension 200x10

 M16 = M12*M23*M34*M45*M56, dimension 784x10

[OL7] Part 1C: Forming the Additive Model Matrix

Parts 1A and 1B show how to initialize the vectors and the AMMs, for an initial image/object.

However, there are 10 distinct objects for this example, so there must be formed 10 distinct

vectors for each layer which in turn leads to 10 associative memory matrices for each layer. Thus

for the 10 objects to be classified, let M12(i)=V1(i)xV2(i)
T
 for i=1:10. Then these 10 matrices

are ‘added’ together to form the additive model matrix rewriting M12 as:

M12 = M12(1)+ M12(2)+ M12(3)+ M12(4)+ M12(5)+ M12(6)+ M12(7)+ M12(8)+ M12(9)+ M12(10)

Likewise, this is done for rewriting M23, M34, M45, and M56:

M23 = M23(1)+ M23(2)+ M23(3)+ M23(4)+ M23(5)+ M23(6)+ M23(7)+ M23(8)+ M23(9)+ M23(10)

M34 = M34(1)+ M34(2)+ M34(3)+ M34(4)+ M34(5)+ M34(6)+ M34(7)+ M34(8)+ M34(9)+ M34(10)

M45 = M45(1)+ M45(2)+ M45(3)+ M45(4)+ M45(5)+ M45(6)+ M45(7)+ M45(8)+ M45(9)+ M45(10)

M56 = M56(1)+ M56(2)+ M56(3)+ M56(4)+ M56(5)+ M56(6)+ M56(7)+ M56(8)+ M56(9)+ M56(10)

 12

[OL8] Part 1D: Stabilize the additive matrices

This invention will not work with the AMMs just derived through Parts 1A-1C. Stabilizing the

matrices is a subtle but very important part to the implementation of the ladder. The additive

matrices need to be stabilized for the AMM process to work effectively and consistently. A

research paper written by Acevedo-Mosqueda et al. gives a comprehensive accounting of past

practices. Some approaches utilize a function of the Adaline method and some others utilize a

thresholding procedure upon the basic AMM. While many of these approaches will fulfill the

requirement for stabilization, a different approach, one that is not found in the literature, is an

approach that leverages the Singular Value Decomposition (SVD) and the so-called ‘whitening’

step from an Independent Component Analysis (ICA) algorithm. (See LaRue et al.).

The stabilization algorithm follows these basic steps:

1. Take the M12 additive matrix.

2. Produce its Singular Value Decomposition components U, S, and V such that M12=U*S*V
T
.

3. Reset the all of the Singular Values to one; effectively treating the singular vectors as equals.

4. Reform M12 with 10 vectors each from U and V: M12=U (:,1:10)*V(:,1:10)
T

5. Repeat (1-4) for M23, M34, M45, and M56.

The Singular Values are omitted, or equivalently the singular values have been set to the value of

1; essentially whitened as the ICA algorithm would suggest. The operation to reform the additive

matrices in this way can be interpreted as an operation that focusses on the character of each of

the 10 pairs of principal vector components without their corresponding singular values in

contrast to the power of the 10 pairs of principal components with their corresponding 10

singular values.

Resonance is a key concept to forming the associative memory matrices. Each additive matrix is

made of 10 independent sub-component matrices and thus each of the five additive matrices has

a rank of 10. However, since the component matrices are not, in general, orthogonal, the mixing

process tends to produce a few dominant singular values among the 10 significant singular

values generated. This dominance is passed on to the mixture in a subtle way. Only by analyzing

 13

the corresponding singular vectors can one foresee which objects will most likely resonate no

matter which object is presented to the system. This type of resonance is sometimes called an

‘unintended attractor’. Further details are given in Part 2.

Note 1: By setting all the singular values to one, it allows the number of vectors in step 4 of

[OL8] to exceed 10. An analysis of the so-called ‘null-space’ vectors will indicate viable

candidates. A viable collection to use may consist of 20 vectors each from U and V.

Note 2: The literature offers an analysis in terms of Eigenvector decomposition (EVD) which is

sometimes associated with the SVD. However, if the matrices are rectangular and not square, the

EVD is not possible to use. And, if the matrices are square, but not symmetric, then the EVD can

lead to a characteristic polynomial whose roots may be comprised of real and complex numbers.

This fact makes rank assessment more difficult than when using the SVD. In addition the

eigenvectors are not necessarily orthogonal like those vectors from the SVD. However, there are

notable applications of the EVD as developed by John Anderson.

Adding details to Parts 1A-1D

The details for Part 1A

Part 1 showed how to implement the initialization of the AMMs with one set of 10 objects.

The AMM first requires input from the CNN. Hence, there is a relationship between the logical

processes of the CNN and the association processes of the AMM. In practice, the vectors that are

described in Part 1A rely on CNN training with more than a single set of objects. Usually, the

CNN is programmed to stop either after a certain number of training iterations or upon attaining

a predetermined threshold.

An epoch is defined as a set of iterations where an individual iteration is identified with one of

the objects to be classified. For the example in this paper, that would mean 10 iterations form an

 14

epoch since there are 10 objects to be classified. In particular, for this example, we have 10

object classes of handwritten numerals (0-9) from the MNIST data set. Thus 200 iterations

means that 20 examples each of the 10 numerals 0-9 were passed through the CNN process or,

that there were 20 epochs of the 10 different classes of objects passed through the CNN process.

Thus there are 200 objects total used for training.

The purpose of the training process is to favorably adapt the weighting matrices and biases

associated with the CNN training process. The adaptation is carried out through

backpropagation. At the end of the 200 iterations the weights, biases, and other parameters are

stored in memory. Note: While in training, the ordering of the objects for each epoch is based on

pseudo uniform random number generator, as is common practice.

Once the weights and parameters are stored in memory, the CNN is placed into testing mode.

This is when the CNN classifies objects without any further backpropagation or parameter

adjustments. The CNN process outline [OL1] is described in testing mode. To acquire the

vectors for the AMM processor, the same 200 objects are passed through the CNN processor. At

each of the CNN layers the output is reshaped, if necessary, into vectors as described in the

AMM processing outline [OL2]. The vectors are partitioned into separate classes by matching

the input object with the appropriate classes of numerals 0-9. Thus, there are 10 classes of

vectors in which each class contains 20 homogeneous output vectors.

A technique utilized in this implementation is to average the vectors in each class to one vector.

For example, in Layer 4 of the AMM process, the stated dimension of the vector is 120x1. In the

context of what we have described so far, after running the 200 iterations, 200 120x1 vectors

would have been collected. These vectors are partitioned into 10 distinct sets according to the 10

distinct classes of MNIST numerals. The 20 members of a class are arranged into a 120x20

matrix. This matrix is averaged across the rows forming a 120x1 vector. This is done for each

class. And, this is done at each of the six CNN layers. Thus at each AMM layer there are 10

vectors accounted for corresponding to a single average of each of the 10 class outputs.

 15

The details for Parts 1B and 1C

Any AMM is formed by taking an outer product of vectors. In this section the vectors are those

derived above in the details for Part 1A. This approach is credited to Bart Kosko.

In part 1B the first AMM is shown as M12 = V1xV2
T
. M12 has dimension 784x2352. M12

refers to an associative memory matrix formed from the Layer 1 and Layer 2 vectors, V1 and

V2; again, as derived in Part 1A. But for each layer there are 10 representative vectors. In

particular, for this example, M12(1) refers to the outer product between the averaged vector

output in Layer 1, in this case a numeral ‘0’ in vector format, and the averaged vector output in

Layer 2 in response to the ‘0’ passing through P12. Hence, M12(1) refers to the 784x1 V1 vector

associated with the numeral ‘0’ multiplied by the transpose of the 2352x1 V2 vector obtained

through the CNN process. In like fashion, M12(2)-M12(10) correspond to the outer products

associated with P12 acting on the remaining numerals 1-9.

In Part 1C, M12 is reformed using Kosko’s additive matrix approach he derived from

conversations with Stephen Grossberg and other resources including Hopfield and Kohonen. By

adding the ten M12 sub-components we get:

M12 = M12(1)+ M12(2)+M12(3)+ M12(4)+ M12(5)+ M12(6)+ M12(7)+ M12(8)+ M12(9)+M12(10).

And, in like fashion, M23, M34, M45, and M56 are formed.

The details for Parts 1D

Inherent to the Kosko formulation of the additive model memory matrices is the issue of

stability. The AMM process outline infers that a vector from one layer is passed through an

associative memory matrix to form a vector in the next layer whereupon this output vector is

now the input to the next associative memory matrix which produces a vector in the next layer.

The problem is, and has been for over 30 years, these matrices and their transformations of input

vectors are not stable. The structure of the additive matrix has a negative effect on the

transformations which in turn yields nonsensical results, in some cases. Many techniques have

 16

been designed to mitigate this problem and among those are offshoots of the basic Adeline

recursion technique.

Another approach to stabilizing the matrices is based on a novel implementation of Independent

Component Analysis. In [OL8] Part 1D the approach includes applying the SVD to an AMM

from Part 1C, setting the singular values to one, forming a new AMM with only 10 vectors each

from the U and V matrices, and repeat the process for the remaining AMMs.

The reason to keep 10 each is because the rank of the AMM matrix is 10; a result of adding the

10 outer product matrices. There are suggestions to using the Eigenvector decomposition but

caution should be used because in some cases the eigenvectors and eigenvalues are complex

valued and may lead to confusion to interpreting rank. In contrast, the SVD leaves little to be

confused about. In addition, there are physical differences in eigenvectors and singular vectors in

that the singular vectors are designed to be orthogonal whereas the eigenvectors are designed to

point in directions of greatest response to the matrix which may not yield orthogonal vectors. In

any event, the matrices in the example are not square, let alone, symmetric, and cannot be used at

all. However, both the Adeline and Eigenvector approaches have been tested with square but

non-symmetric matrices and each method works nearly as well as the SVD/ICA implementation.

Parts 1A-1D in review:

The action on the ladder starts with the CNN training process. It has a unidirectional hierarchy

and has many layers. Various classes of objects are given as inputs to the process. Each class of

objects behave similarly as they pass through the CNN process. At first, the CNN is trained using

these objects. Then, after a prescribed limit, the training is stopped. Then, once again, the objects

are passed through the CNN processor but this time the outputs are stored as vectors in order to

form the AMM rail. The stored vectors are averaged within their respective classes to form a

single representative for each class and for each layer.

For example, take the class of objects for the numeral ‘0’. We take 20 examples of the numeral

‘0’ from the MNIST data base. Each example numeral starts at the L1 layer. The average of the

 17

20 inputs is kept as the class representative for the numeral ‘0’ at the V1 layer of the AMM.

Then, each of the 20 inputs is passed through the set of CNN processes connecting L1 to L2.

This collection of 20 vectors at the L2 level is averaged into a class representative of ‘0’ at the

V2 layer of the AMM. In like fashion a ‘0’ representative is found for the remaining layers V3-

V6 by leveraging the information derived in L3-L6. Thus there are six representatives in all for

the numeral ‘0’. The first AMM for ‘0’ connecting V1 to V2 is called M12(1), and is formed by

taking the outer product of V1 and V2. Then, the second AMM for ‘0’ connecting V2 to V3 is

called M23(1), and is formed by taking the outer product of V1 and V2. In like fashion we form

the remaining connection matrices for ‘0’, namely M34(1), M45(1), and M56(1). There are five

connection matrices in all for the numeral ‘0’. This procedure is repeated for the remaining nine

numerals. Thus from a total of 50 matrices, the five additive matrices M12, M23, M34, M45, and

M56 are formed as shown in Part 1C.

These five additive matrices are inherently unstable and thus are stabilized using the SVD and

the ICA method as shown in Part 1D. They replace and are named the same as the original

additive matrices M12, M23, M34, M45, and M56 for sake of brevity.

Connecting the two rails with intra-layer matrices

The purpose of Parts 1A-1D was to show how to form the AMM rail. The product is the set of

five matrices M12-M56. These five matrices are an estimation of the five processes P12-P56, an

existing product of the CNN rail. The construction of the ladder requires a set of intra-layer

matrices to act as rungs to connect the finished rails together.

It is important to stop and point out that for a given object the CNN layer outputs and the AMM

layer outputs are different; they are related; they both give information to the same layer number;

but their outputs are calculated in a fundamentally different fashion. This is due to the realization

that while the AMM system is dependent on the CNN system, the AMM is not a copycat of the

CNN. Indeed, looking back at Figure 4, while the CNN necessarily steps through a series of

seven logical processes, the AMM uses a single matrix to circumvent the process with a one-step

association.

 18

To build the rungs as shown in Figure 1, pairs of vectors from L2 and V2, L3 and V3, L4 and

V4, L5 and V5, and L6 and V6 are required. In this case a set of objects is passed through the

two rails where the L and V vectors are arrived at completely independently, for the first time;

basically it is almost testing mode. By following Parts 1A-1D, the ILMs listed in [OL4] are

derived. Thus the CNN rail with its five sets of logical stepping processes and the AMM rail with

its five sets of intuitive association processes are connected with five ILM rungs each being an of

intuitive association process to complete the joint processing architecture called J. Patrick’s

Ladder. The system is now ready to execute testing.

Part 2

Test and Evaluation of J. Patrick’s Ladder

Up to now the detailed description in Part 1 has focused on how to set up an AMM rail and a set

of rungs given a CNN rail. Also, up to now, the AMM has been dependent on first training the

CNN for forming the vectors that in turn form the AMMs. Once the training is over the AMM

rail becomes completely independent from the CNN. In fact, as will be noted later on, the CNN,

in a turn of events, can become dependent on the AMM to improve its own results. Thus the

CNN and AMM can develop a mutually beneficial relationship.

Part 2 gives several operational implementations of the invention shown in Figure 1. Some

scenarios are included to give results in the way of training time, execution time, and accuracy.

Other scenarios will emphasize the usefulness of the intra-layer connectors.

Testing with the CNN

An object to be classified is presented to the CNN. The input is viewed as the L1 layer. The

information in this layer is relayed to the L2 layer via the P12 process that connects Layer 1 to

Layer 2. Then the information in layer two is processed via P23 to Layer 3 and so on down to

layer L6. L6 is a 10x1 vector and its dimension corresponds to the number of distinct classes of

objects. The CNN classifies the object from its L6 output using a maximum criterion.

 19

Testing with the AMM (Long Version)

An object to be classified is presented to the AMM. The input is viewed as the V1 layer. The V1

vector is passed through the matrix M12 to produce the output vector V2. The AMM process

continues by passing V2 through the next associative matrix, M23, to produce V3, and so on to

V6. The AMM classifies the object from its V6 output using a maximum criterion.

Testing with the AMM (Short Version)

The CNN processes between the layers cannot be combined into one process step. On the other

hand the AMM process can be reduced to one matrix by simply setting

M16=M12*M23*M34*M45*M56 resulting in a 784x10 matrix. In other words, this single

association matrix M16 can take the place of over 20 individual logic based processes. Hence,

once the V1 vector is presented to M16, the V6 vector is produced in one step. The AMM

classifies the object from its V6 output using a maximum criterion.

Note: The transitive property for matrices was invoked to form M16. Zhou and Quek also used

the transitive property. The difference between this implementation and their implementation is

that their implementation uses deterministic object patterns at every layer whereas J. Patrick’s

Ladder only uses deterministic objects at the endpoints. The point is their implementation does

not rely on a neural network framework such as the CNN; the two implementations are

fundamentally different in this respect.

Evaluating the test execution times of the CNN and the AMM.

Figure 5 provides a drawing that shows the CNN running through all six layers while the AMM

compresses the matrices that connect Layer 1 to Layer 6, forming M16 as written in [OL6]. At

the bottom of each system is the execution time it took to test an individual object presented at

Layer 1 to both systems. The elapsed times are not important; the relative times are important.

The AMM executed the decision 20x faster.

Evaluating the accuracy of the CNN and of the AMM after 5000 training iterations.

 20

Figure 6 gives a visual representation of the accuracy achieved after 5000 iterations. A test was

administered that tested 100 members each of the ten MNIST classes. The test began with

presenting one hundred 0’s to the CNN and AMM systems. This was followed by presenting 100

1’s to the systems and so on, ending with 100 9’s to each system. For each test a 10x1 vector is

computed. For the ideal case in computing the 10x1 vector for the numeral 0, the output vector

would look like the transpose of [1 0 0 0 0 0 0 0 0 0], where the ‘1’ in the first position indicates

the decision is directed towards 0. The ideal output vector for the case when the numeral 1 is

tested would be the transpose of [0 1 0 0 0 0 0 0 0 0]. The ‘1’ in the second position indicates

that the decision is towards the numeral 1. Thus in carrying out the ideal test over the 10 sets of

100 numerals each drawn from the same class, and presenting the results as vertical columns of a

matrix, the result would appear as the staircase in Figure 6A. The color-bar to the right of the

figure indicates a range of values from 0 to 1. White indicates the strongest indicator of which

numeral was being tested.

Figure 6B visualizes the results for the CNN; the overall accuracy for the CNN was calculated to

be approximately 80%.

Figure 6C visualizes the results for the non-stabilized AMMs. The accuracy is exactly 10%; in

this case row eight of the matrix is consistently the strongest indicator.

Figure 6D, in stark contrast to Figure 6C, visualizes the results for the stabilized AMMs. Its

overall accuracy matches the accuracy of the CNN at approximately 80%.

For this test, although the results for the CNN and (stabilized) AMM are virtually the same there

are two important notes to make: (1) The CNN took 85 seconds to execute the test of 1000

objects while the AMM only took 3 seconds to execute the test of 1000 objects and (2) As noted

before the outputs on any corresponding layer between the CNN and the AMM are different. By

combining the results visualized in Figures 6B and 6D, an improvement in accuracy can be

made. Of course, if the AMM was substituted with another CNN-like process, for example the

HMAX method by Riesenhuber & Poggio, improvements in accuracy would be also made.

 21

Evaluating the accuracy of the CNN and of the AMM over a range of training iterations

Figure 7 indicates what is arguably the most important and immediate benefit from this

invention. There is an asymptote at the 80% mark that both the CNN and AMM systems reach

after 2000 iterations. However, the AMM reaches a 77% accuracy after only 200 iterations while

the CNN is still at a 12% accuracy mark. Considering that the 77% is up against an 80%

asymptote, this is equivalent to stating that the AMM returned 96% of what the best of the CNN

or AMM can do overall. In terms of time, the CNN needs something on the order of 60 minutes

of training to measure up to the AMMs result posted at 6 minutes.

Test and evaluation of the rungs: improving the CNN with the help of the AMM

At the 200 iteration or 6 minute mark the CNN accuracy posted a 12% accuracy while the AMM

posted a 77% accuracy. Returning to Figure 1, the rungs are those matrices ILM22 through

ILM66 from OL4. When the information from V2 was passed to L2 through ILM22, and then

the CNN executed the remaining steps along its own rail, the CNN accuracy rose to 14%. When

the information from V5 was passed to L5 through ILM55, and then the CNN executed the

remaining step through P56, the CNN accuracy rose to 37%. This indicates there may be an

improvement in the way in which backpropagation in the CNN may be carried out in the future.

A scenario for utilizing the full potential of joint processing architecture

Given an input to L1, the movement through the ladder could be:

L1-P12-L2-P23-L3-P34-L4-ILM44-V4-M42-V2-ILM22-L2-P23-L3-ILM33-V3-M36-V6

And make the decision.

 22

Documents considered being relevant

Neural Networks

U.S. PROVISIONAL PATENT APPLICATION, EFS ID 16351917 App No. 61847685 Confir

No. 4039, Receipt Date 18 Jul, 2013 13:41:35, James and Denise LaRue.

U.S. Patent: 6,128,606 October 3, 2000, Bengio et al.

U.S. Patent: US 2007/0047802 A1 March 1, 2007, Siddhartha Puri

J. J. Hopfield, “Neural networks and physical systems with emergent collective computational

abilities,” Proc. Nat. Acad. Sci., vol. 79, pp. 2554–2558, 1982.

Cohen, M.A. and Grossberg, S, Absolute stability of global pattern formation and parallel

memory storage by competitive neural networks, IEEE Transactions on Systems, Man, and

Cybernetics, SMC-13, 815-826.,1983

 Kohonen T., “Correlation matrix memories”, IEEE Trans. Comput, vol. C-21, pp. 353-359,

1972.

Y. LeCun, Courant Institute, Corinna Cortes, Google Labs, New York, “The MNIST database of

handwritten digits, http://yann.lecun.com/exdb/mnist

Widrow, B. and Lehr, M. A., 30 years of adaptive neural networks: Perceptron, adaline and

backpropagation, Proc. IEEE 78, 9, 1415–1441, 1990.

Paul J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the

IEEE, Volume 78, Issue 10, 1550 - 1560, Oct 1990, doi10.1109/5.58337

http://yann.lecun.com/exdb/mnist

 23

Riesenhuber, M. & Poggio, T. (1999), Hierarchical Models of Object Recognition in Cortex,

Nature Neuroscience 2: 1019-1025.

Jake Bouvrie, Notes on Convolutional Neural Networks, Center for Biological and

Computational Learning, Department of Brain and Cognitive Sciences, Massachusetts Institute

of Technology, November 22, 2006.

Associative Memory Matrices

Bart Kosko, Neural Networks and Fuzzy Systems, A Dynamical Systems Approach to Machine

Intelligence, Prentiss Hall, Englewood Cliffs, NJ 07632, 1992.

R. W. Zhou and C. Quek, DCBAM: A discrete chainable bidirectional associative memory.

Pattern Recogn. Lett. 17,9, 1996, 985–999.

Chartier, S. and Boukadoum, 2006, A bidirectional heteroassociative memory for binary and

grey-level patterns. IEEE Trans. Neural Netw., 2006, 17, 2, 385–396.

Acevedo-Mosqueda et al., Bidirectional Associative Memories: Different Approaches, ACM

Computing Surveys, Vol. 45, No. 2, Article 18, February 2013.

James P. LaRue (Jadco Signals) and Yuriy Luzanov (AFRL-RIGC), Paper 8745-76: “Stabilizing

bidirectional associative memory with principles in independent component analysis and null

space”, SPIE Defense, Security, and Sensing 29 April - 3 May 2013, Baltimore, Maryland

Both

William James, Briefer Psychology, Cambridge: Harvard University Press, 1892/1984.

http://maxlab.neuro.georgetown.edu/docs/publications/nn99.pdf

 24

K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of

pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4): 93-202, 1980.

J. A. Anderson, An Introduction to Neural Networks, MIT Press, Cambridge, MA, 1996.

