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Richard L. Tutwiler, Matthew S. Baran and James P. LaRue1 

 

Abstract—An implementation of the Blind Source Separation problem as 

applied to digital modulation schemes (16-QAM, QPSK, 4-FSK) is described and 

simulated.  The estimated unmixing matrix is obtained through Joint Approximate 

Diagonalization of Eigenmatrices (JADE).  Unique challenges in the use of digital 

modulation schemes arise from phase rotations introduced by the mixing matrix 

and the whitening matrix applied during JADE pre-processing.  Signal phase 

rotations are corrected using the M-power method, a non-data-aided algorithm for 

use with rotationally symmetric signal constellations.  For the purposes of 

evaluating the proposed algorithm, all data generation and processing is 

performed using MATLAB code and Simulink modeling with symbol error rate 

(SER) utilized as a measure of system performance. 

 

Index Terms—Blind Source Separation, Cumulant, Digital Modulation, 

Independent Component Analysis, Joint Diagonalization, Cumulant 
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I. Introduction 

The Blind Source Separation problem has been classically applied as a linear mixing of 

independent signals [1], [2], [3].  Analysis of speech signals (i.e. ,the “cocktail party” 

problem), EEG signals, or seismic vibrations are common practical applications of the 

blind separation problem [4], [5], [6]. 

 

BSS aims to differentiate signals that interfere with each other during propagation using 

only the mixtures that arrive at multiple receivers.  Signal mixing is represented by an 

unknown mixing matrix A shown in Eqn. 1, where S is the original set of signals and X is 

the received set of mixtures.  X Cnxt, A  Cnxm, S  Cmxt for n receivers, m transmitters, 

and t samples.  No a priori information is assumed to be known about the sources, but 

they are taken to be statistically independent for the purpose of separation.  The 

solution to the mixture problem lies in estimating the mixing matrix and solving the linear 

equation, Eqn. 2, where Â  indicates pseudo-inverse of the estimated mixing matrix A. 

 

   tSAtX         (1) 

   tXAtS  ˆˆ             (2) 

 

In contrast to conventional applications, this paper describes the use of the linear mixing 

model used in Blind Source Separation to recover and interpret digitally modulated 

communications signals.  The independence criterion imposed on the source signals is 

still upheld under the assumption of statistically independent data-symbols sent from 
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separate (independent) transmitters. The processing architecture where the BSS-ICA 

algorithm will be utilized is illustrated in Figure 1. 

 

Figure 1: System Block Diagram 

 

Referring to Figure 1, the basic inputs to the BSS-ICA algorithm arrive at the antenna 

array.  The antenna array is interfaced to the RF Front End for preprocessing which 

would  consist of Low Noise Preamplification (LNA), Automatic Gain Control (AGC), and 

possible frequency translation to an IF stage.  The output of the IF stage is routed to the 

digitizer consisting of a bank of A/D converters.  Beamforming, if utilized with the array, 

is performed in the digital domain for flexibility and the output of the beamformer is 

interfaced to the BSS-ICA algorithm.  The BSS-ICA algorithm outputs the statistically 

independent un-mixed signal estimates to the Modulation Recognition System which 

ID’s the specific modulation types which are then re-routed via the switch control to the 

crosspoint switch which connects the respective FIFO buffers to the correct channels of 

the Demodulation and Phase Correction processing unit.   

 

II. Joint Approximate Diagonalization of Eigenmatrices 
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The solution to the BSS problem posed above lies in the estimation of an un-mixing 

matrix using the JADE algorithm.  JADE is a higher order statistical method of 

independent component analysis (ICA).  Cumulant tensors, which are composed by the 

cumulant generating function for X, defined in Eqn. 3 form the basis for separating 

mixed, statistically independent data. 

 

  ))(log( tXeEtg        (3) 

 

Diagonal elements of a cumulant matrix characterize the distribution of a signal, while 

off-diagonal elements indicate statistical dependencies between signals [7].  JADE 

relies on the fact that the unmixed output signals are statistically independent only when 

cumulant tensors of all orders are diagonal matrices (i.e. they have minimal co-

dependencies).  Using Givens rotations to approximately diagonalize the cumulant 

matrices provides statistically independent output data up to a permutation and scaling 

change of the original signals. Diagonalizing the second order cumulant tensor is 

equivalent to decorrelation of the data (i.e. reducing the covariance matrix of the signals 

to the identity matrix).  The decorrelation matrix is a transformation that whitens the 

mixed signals, and is denoted by W.  The decorrelation matrix is composed of the 

eigenvectors of the covariance matrix of the mixed signals, and altered by a scaling 

factor.  The properties of the decorrelation matrix W given a mixing matrix A are shown 

in Eqn. 4. 

 

n

HHH

y IWWAAWWR         (4) 
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The approximate diagonalization of third and fourth order cumulants requires an 

optimization criterion to measure the dependencies between signals.  When the 

cumulant matrices are near diagonal, the signal co-dependencies are minimized, and 

this state represents the best value for the optimization criterion.  The general Givens 

rotation matrix (Eqn. 5) for angle theta is used for diagonalization because of the 

orthogonality property, which causes no scaling change in the data.  Further details on 

the JADE algorithm are given  by Comon [8], Cardoso [9], et al. 
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III. JADE Algorithm with Complex Baseband Signals 

A. Phase Rotation Problem 

In baseband complex data, phase rotations of the signals of interest are introduced by 

the mixing matrix and during the whitening operation prior to JADE processing.  These 

rotations are easily visualized as rotations of the de-mixed signal constellations in the 

complex plane (Figure 2).  Given an arbitrary rotation of the signal constellation, the 

demodulation process can potentially produce 100% symbol error rates due to symbols 

being resolved incorrectly.  To counter errors caused by phase rotation, the M-power 

method[10] is applied to Phase Shift Keying (PSK) and Quadrature Amplitude 

Modulation (QAM) signals to correct the rotation.  This corrected signal is still 

ambiguous due to the symmetry of PSK and QAM constellations, so each symmetric 

position is tested for accuracy to find the correct rotation and hence the minimal symbol 
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error rate (SER).  QAM and QPSK signals have symmetry over rotations of 
2

 , requiring 

the analysis of 4

2

2




  ambiguous cases.  However, for M-PSK constellations, the 

signal constellation has symmetry over rotations of 
M

2  for M symbols, which requires 

analysis of M ambiguous cases.  This is an important consideration for the use of M-

PSK with many symbols. 

           

Figure 2a: QAM signal with no   Figure 2b: QAM signal with 45 degree 

phase rotation    rotation 

 

B. M-Power Method Solution 

Although we have an estimate of the mixing matrix and the whitening matrix (the two 

complex-valued sources of the phase error in complex baseband signals), the rotation 

data cannot be extracted from this information due to the unknown permutation and sign 

change inherent to the data[11].  In light of this fact, a non-data-aided method of 

correcting phase rotation was adopted for its applicability to QAM and PSK signals and 

its availability as a Simulink library block.  The M-Power method estimates phase error 

from complex valued symbols as shown in Eqn. 6. 
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Here, x(k) is the complex representation of in-phase and quadrature components of the 

signal, L is the length of the signal, and the angle function converts a complex number 

to an angle.  Since QAM and QPSK are both rotationally symmetric for θ = n(π/2), M is 

equal to 4 in both cases ( 2π/(π/2) = 4 ).  Additionally, it can be shown that, using the M-

Power method, the 16-QAM corrected signal always settles to a 45 degree offset (See 

Figure 2. approximately) instead of a 0 degree offset.  This is easily corrected in the 

permutation testing by adjusting the phase correction by 45 degrees on QAM signals.  

This process corrects the signal to within a multiple of π/2, but that still allows for three 

rotations with near 100% error, and one correct rotation with minimal error. 

 

Our signals of interest (16-QAM and QPSK) only cause 4 possible permutations, so it is 

feasible to iteratively test the quality of the demodulated signals to infer which signal is 

correct.  In the model, this is implemented as a minimization of symbol error rate (SER), 

which depends on the knowledge of the transmitted symbols.  Of course, in reality that 

knowledge is not available, but the solution is to have a human analyst or automated 

analysis available to process the four permutations of demodulated output and decide 

which three signals have garbage information, and which signal is the correct rotation.  

For example, a human could listen to a digital audio signal and quickly determine which 

possibilities were garbage signals, and which one contains recognizable audio.  

Alternatively a machine might recognize that a signal does not match a predetermined 

data format, or that the data fails a checksum, etc.  However, error detection and 
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correction is outside the scope of this paper, and symbol error rate (SER) is chosen as 

a place-holder. 

 

C. Signal Permutation Problem and Rotational symmetry solution 

As implemented in the MATLAB and Simulink code at this time, a human analyst 

performs modulation recognition on the unmixed signals by viewing the constellation 

diagrams of the estimated signal set to properly order the signals for demodulation.  An 

automated modulation recognition algorithm (e.g. the Agilent N682JE-MK1 system) 

could also perform the same task in this application (see Figure 1).  The signal ordering 

is used to route the received signals to the appropriate demodulation scheme using the 

crosspoint switch and buffer illustrated in Figure 1.  QAM and QPSK signals are 

rotationally adjusted using the M-Power method then demodulated in each rotationally 

symmetric position, in this case [0, 
2

 , π, 
2

3 ] (Figure 13Figure 3a-d).  FSK signals are 

unaffected by phase rotation, so there is no need to adjust them prior to demodulation.  

Finally, each demodulation result is sent to a symbol error calculation using the 

transmitted symbols.  The minimal symbol error rate is chosen to be the correct rotation, 

and a completely unmixed and demodulated signal is selected. 

a)0 b)π/2  
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c)π d)-π/2  

Figure 13 (a-d): Four rotationally symmetric positions of a QAM signal labeled 

with applied rotation in radians.  One symbol is highlighted for illustration 

purposes. 

 

IV. JADE Algorithm with Real-Valued Carrier Frequency Signals 

While many of the challenges lie with baseband complex signals, additional work was 

also carried out to show separation of mixed carrier signals.  In the carrier signal model 

illustrated in Figure 4, a serial bit stream was converted to two parallel streams used to 

modulate the I and Q channels respectively.  

 

Figure 4: Upconversion Block Diagram 
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This simulation was computed for QPSK signals with closely spaced carrier frequencies 

(2 kHz and 2.1 kHz).  Figure 5 shows a spectral plot before mixing, after mixing, and 

after JADE processing.  The signals after JADE processing are again separated at the 

carrier frequency which can be determined by comparing the FFT plots before mixing 

and after JADE processing. 

 

As an example of serial to parallel bitstream conversion, let the bitstream 

B={0,1,1,0,1,0,0,0,1,1}.  The in phase bitstream BI consists of the odd numbered bits 

1,3,5,… and out of phase bitstream BQ consists of the even numbered bits 2,4,6,…  

Therefore, for our example, BI = {0,1,1,0,1} and BQ = {1,0,0,0,1}.  The I and Q bits are 

upconverted to the carrier frequency and summed to create a real-valued, modulated 

signal. 

 

 

  a.    b.    c. 

Figure 5:(a) FFT of two modulated signals, one a 2kHz and one at 2.1kHz 

(b) FFT of one mixture showing spikes at both 2 and 2.1 kHz 

(c) FFT plot of two unmixed signals after JADE processing with clear separation 

 

 



 11 

V. Algorithm Performance Analysis 

A. Complex Baseband Signal Data 

Complex data symbols can be unmixed using the JADE algorithm, but with the side-

effect of permutation and scale changes, as well as the phase rotation problem.  With 

these challenges met by phase rotation correction and modulation recognition (i.e., 

either human or automatic), symbol error rates drop to acceptable levels.  Error! 

Reference source not found.Figure 6 shows the importance of phase-correcting the 

digital baseband signals, as the demodulation often returns 100% incorrect symbols 

when a signal is significantly phase rotated.  The figure is a plot of symbol error rate as 

a function of signal to noise ratio for QPSK signals at different phases of the unmixing 

process.  The variability before phase correction, shown in the blue curve, is due to 

phase rotation.  When a signal is phase rotated after JADE processing, the blue curve 

shows unacceptably high error rates, however the same plot can drop to 0% error if the 

signal is not out of phase after JADE processing.  The variability in the blue curve is the 

motivation for phase correcting the unmixed signals, shown in green. 

 

Figure 6: SER as a function of SNR for baseband QPSK signals 
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Figure 7 shows SNR versus SER for QAM signals.  The JADE algorithm can recover 

signals at acceptable error rates even in low SNR scenarios, but phase correction is 

necessary to properly demodulate the unmixed signals.  In Figures 6 and 7, comparison 

of the results before mixing (red) to the corrected JADE results (green) reveals error 

rates that are actually lower for the unmixed signals.  This is likely caused by scaling 

and normalizing factors in the JADE algorithm which could eliminate some outliers and 

reduce the original error in a minimal way. 

 

 

Figure 7: SER as a function of SNR for baseband QAM signals 

 

B. Carrier Frequency Signal Data 

Permutation and scaling are still challenges in real-valued carrier signal separation with 

JADE, but phase rotations are no longer a concern as they were for complex baseband 

signals.  This is because we are working with real-valued data, where there are no 

complex values acting as phasors on the data during mixing and whitening (thus 

causing phase rotation).  Any mixing and whitening transformations applied to carrier 

frequency data will be real-valued as well, causing only permutation and scaling 

changes.  For carrier signals, permutation ambiguity can be resolved by locating the 
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peak in the spectral plot, which indicates the carrier frequency of the signal.  The signals 

can then be downconverted according to the frequency at which they are received.   

Modulation recognition is then performed as outlined for complex data. 

 

Scaling ambiguity is the more troublesome problem in the form of sign changing, or 

inverting, the bitstream.  If the received signals have been scaled by a negative number, 

arising from the normally distributed mixing matrix or the whitening matrix, the 

downconversion will produce an inverted bitstream (i.e. ones become zeros and vice 

versa). This problem is resolved by demodulating both the received bitstream and the 

inverse of the received bitstream (the only two possible signals for sign ambiguity) and 

choosing the signal with fewer errors. 

 

Figure 8 shows JADE performance as a plot of symbol error rate versus signal to noise 

ratio for an FSK and QPSK signal, respectively.  The curves in each plot show the 

symbol errors before mixing, after mixing, and after JADE processing at different signal 

to noise ratios.  The blue curve represents mixed data and can be expected to have a 

consistently high error rate, regardless of SNR.  Original and unmixed signals for FSK 

are unaffected by this level of noise and scaling, resulting in 0% error rates.  The PSK 

shows high levels of error for low SNR, but the unmixed signal is nearly identical in error 

rate to the original signal, which is the best case we can expect.   
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Figure 8a: FSK error rates vs. SNR   Figure 8b: QPSK error rates vs. SNR 

 

The carrier signal 

errors

 

at 0 dB are shown in Figure 9 as a graphical representation where each spike indicates 

a symbol error.  An FSK signal is shown in the left side plots and a PSK signal on the 

right side plots.  The top plots are the original errors after the application of additive 

white noise.  The middle plots are taken after mixing, verifying substantially more errors, 

and the bottom plots in blue and red are the symbol errors after JADE processing.  The 

teal lines in the bottom plots represent the difference between errors made at the pre-

mix step and errors made after JADE unmixing.  Again, the JADE unmixed signals have 
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comparable symbol errors to the pre-mix signals, as evidenced in the teal plots.  This 

indicates that even in noisy environments, JADE can be an effective unmixing tool. 

 

Figure 9: Bit errors represented as spikes (errors) deviating from 0 (no error) for 

FSK and QPSK at 0 dB SNR 

 

Figure 10 shows the FFT plot of the PSK and FSK signal that generated the symbol 

error plots from Figure 9.  Comparing the FSK (blue) and PSK (red), the peaks in the 

frequency spectrum show the closeness of the carrier frequency for the signals of 

interest.  Despite the closely spaced carrier frequencies in a low SNR environment, 

JADE can still unmix with errors comparable to pre-mix demodulation (Figure 9). 
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Figure 10: Two sided FFT plot of FSK and PSK signals showing closely spaced 

carrier frequencies, 3 kHz FSK and 4.2 kHz PSK 

 

VI. Conclusions 

An implementation of the Blind Source Separation problem as applied to digital 

modulation schemes (16-QAM, QPSK, 4-FSK) has been presented.  The estimated 

unmixing matrix is obtained through Joint Approximate Diagonalization of Eigenmatrices 

(JADE).  Signal phase rotations are corrected using the M-power method, a non-data-

aided algorithm for use with rotationally symmetric signal constellations.  All data 

generation and processing is performed using MATLAB code and Simulink modeling 

with symbol error rate (SER) as a performance measure. 

 

Future research and applications of this work are to explore the performance of JADE in 

a multipath propagation environment and the effect of mixing convolved multipath 

signals with line of sight signals in the algorithm.  Additionally, the Simulink model will 

be expanded to simulate more robust operation, including carrier signals, variable-

dimension signal sets, and automated modulation recognition. The flowchart 

organization of the Simulink model allows specific elements such as the JADE algorithm 

to be easily lifted out and plugged into a separate model.  This modular structure will be 

an effective tool for further algorithm development ans system integration in Simulink. 
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