
Finite Fields and Entropy in Descrambling
 Edmond Rusjan

Dept Math and Science
SUNYIT, Utica, NY,
edmond@sunyit.edu

James P LaRue

dba Jadco Signals, LLC
James@JadcoSignals.com
 www.DataPlasticity.com

ABSTRACT

This report presents applications of finite fields to descrambling

and to characterizing special sequences.

1. INTRODUCTION

This report was a continuation of a research effort which had as

an objective to find an application for Tsallis entropy with

modulated bitstreams.

We began by defining a bitstream. A bitstream for our purposes is

defined as a structured series of 1’s and 0’s sent through a

randomizer. The structured bitstream (before being sent to the

randomizer) is defined as a set of frames of a certain length where

in each frame the bits are portioned into a header, a message, and

an EDAC. We can think of the header as synchronization tool to

indicate that a message is to follow. The EDAC (Error Detection

and Correction) is a check on the message.

If one were take a Fourier Transform of this bitstream, spectral

harmonics, led in part by the synchronization bits in the header,

are easily recognized. And, if this bitsatream was digitally

modulated, again, spectral harmonics, led in part by the

modulated synchronization bits in the header, are easily

recognized.

Modulated bitstreams that yield spectral harmonics are not

desired; there is a benefit in power efficiency and bandwidth if

these harmonics can be distributed across the bandwidth of the

signal. To do that the framed sequence of bits are sent through a

randomizer. In particular we have focused our attention on a class

of randomizers known as ‘feed through randomizer’. In electrical

engineering they are known as IIR (Infinite Impulse Response)

filters. This is in contrast to FIR (Finite Impulse Response) filters

which are used to ‘derandomize’.

Randomizers for our application are inherently unstable; this will

be shown below. However, randomizers tend to smooth out a

spectrum which is good from an engineering design perspective.

Randomizers take away spectral harmonics that are present due to

the synchronization bits in the header. From an entropy point of

view, a (naïve) entropy measure assigned to the structured bits

(using a histogram of bits) will be low compared the measure

assigned to the randomized bits. There are, of course, theoretical

limits on this (naïve) entropic measure which have to do with the

most general, albeit, unpractical, class of bitstreams, the uniformly

distributed system of bits. We mention the word unpractical since

systems of pseudo random uniformly distributed bits are better

identified with ‘encrypted’ bitstreams, and we are not interested in

these systems.

Another word for randomizer is scrambler, and we will stick to

using this latter expression. Our need to understand scramblers is

based on our need to develop an entropy measure on modulated

bitstreams, which commonly use scramblers to increase spectral

efficiency, in some sense. Scramblers do a good job in removing

elements of an obvious structure in the bit domain and pass it on

to the modulated domain. Hence our goal was to first understand

the characteristics of these scramblers and how they change the

structured characteristics of the framed bits and then ultimately

identify those characteristics in the modulated domain. Going into

this research we knew that the naïve method of entropy measure,

that being taking subsets of contiguous bits as received and

applying a Shannon type entropy formulation based on the

histogram of these contiguous bits, would not be sufficient. In

fact, grad student E.J. Yoerger from the University of New

Orleans, provided Special Signals with a Matlab based GUI that

demonstrated the scramblers ability to hide all traces of the

underlying structure of the framed bitstream after it goes through

any scrambler. It should be noted that our naïve measure of

entropy is very close to the measure associated with Sigmage.

Co-currently, we looked at applying a blind deconvolution

method to the scrambled bitstreams to see if, in a deterministic

way, we could identify the scrambler itself. This line of research

was built on the research also provided to Special Signals by Dr.

George Smith of NRL (Naval Research Lab). Dr. Smith took the

blind deconvolution method and used it to do blind descrambling

(in the bit domain) and blind demodulation (in the modulated

domain). With blind descrambling he found that the approach is

difficult due to linear algebra constraints which we will talk about

later in this paper. However, his research helped guide the effort

in this paper to produce two working algorithms; the first

algorithm is based on a blind EDAC polynomial assessment while

mailto:edmond@sunyit.edu

the second algorithm shows the existence of a solution to a system

of equations with truncated variable inputs.

In forming a solid base for this extension we leveraged ourselves

with the basics of Galois theory and how it pertains bit encoding

for EDAC’s and we research the basics of DE’s (difference

equations) and how it pertains to the feedback process found in

scramblers. We found a connection between roots of (Galois

Field) polynomials where we took some liberty in jumping

between Galois fields and the complex number system, and roots

of the z-transform of the DE’s.

The remainder of this report will be broken up into the following

sections. The first section will be the reprint of the summer report

with some changes where is will be noted that it is tied to the

extended research. The second section will discuss the basics of

DE’s and how scramblers can be thought of in this domain. We

will include two examples: one is taken from the Fibonacci

sequence and the other from a scrambler associated with a V.27

modem. The third section will turn to the matrix methods we have

developed along the lines of blind identification of EDAC

polynomials and scramblers. In the final section we will combine

the DE method with the matrix method and examine how we shall

proceed with developing a meaningful measure of entropy to

apply to these systems in both the bit and modulated domains.

2. THE STRUCTURE OF FINITE FIELDS

Finite fields are fields with a finite number of elements. They

were first studied by Evariste Galois and are also called Galois

fields. They have been known initially for their mathematical

beauty and applications within mathematics. More recently they

have found important applications in communications

engineering, where they provide the mathematical foundation of

coding and scrambling [2]. In coding, they are used as a design

tool for Bose-Chaudhuri-Hocquenghem and Reed-Solomon

codes. In scrambling, they provide the means to understand the

properties of maximal length linear feedback shift register

sequences .

Informally, a field is a set in which we can do the same operations

as with fractions, real numbers, or complex numbers. More

precisely, a field is a set of elements F , including 0 and 1,

together with two binary operations: addition + and

multiplication , which are associative and commutative and

where multiplication distributes over the addition in the usual

way. Every field element u , has a unique negative u , such

that

0)( uu

. Every

nonzero

field

element

u has a

unique reciprocal
1u , such that 11  uu . Therefore,

formally, a field is the triple),,(F .

Another way to define a field is as a commutative ring where

every nonzero element has a multiplicative inverse. Note that the

set of field elements with the operation of addition forms an

Abelian (commutative) group and that the set of nonzero field

elements with the operation of multiplication also forms an

Abelian group.

The order of a field is the number of elements in the field. If the

order is infinite, we call the field an infinite field. For example,

rational numbers Q , real numbers R and complex numbers

C are all infinite fields.

2.1 Examples

Fields with finite order are called finite fields. For example, 2Z

is a finite field consisting of only two elements 0 and 1, where

addition and multiplication are defined modulo 2. To stress that it

is a field, we denote it 2F , i.e., the Galois field with 2 elements.

This is the smallest field.

2.1.1 The Field pF

Similarly, if p is a prime, the Galois field pF is the finite field

of order p , where addition and multiplication are defined

modulo p . On the other hand, 4Z with modulo 4 addition and

multiplication is not a field, because the element 2 does not have

an inverse.

2.1.2 The Field 22
F

There exists a field with 4 elements. We construct it in an

abstract way, referring to the field axioms. Being a field, 22
F has

to contain 0 ,1 and two more elements. Let us denote the third

element . Then the field axioms, in particular the closure of

addition and the closure of multiplication, imply that

1 and
2 are also elements of the field. This gives five

elements, so at least two of them must be equal to each other. It is

easy to check that the only consistent choice is
21   and

that the addition and multiplication operations are defined by the

Table 2.1 and Table 2.2, respectively.

Note that the notation is better expressed if we view the fourth

element as 1 , while the multiplication is more natural with

2 . Of course, 1 and
2 are the same element. The

correspondence between the additive representation and the

multiplicative representation is expressed in the logarithmic Table

2.3.

Table 2.1. Addition in 22
F

  0 1  1

 0 0 1  1

 1 1 0 1 

   1 0 1

1 1  1 0

Table 2.2. Multiplication in 22
F

Table 2.3. Logarithms in 22
F

Note that logarithmic Table 2.3 is sufficient for understanding the

field and that the addition and multiplication tables can easily be

reconstructed from it. In particular, the addition is simply vector

addition and the multiplication of nonzero elements is cyclic.

It is also worth observing, that the equality
21   implies

that and
2 are roots of the polynomial 12  xx . The

field 22
F can be viewed as the polynomial remainders modulo the

polynomial 12  xx .

2.1.3 The Field mp
F of Polynomial Remainders

If)(xf is an irreducible polynomial (cannot be factored) of

degree m with coefficients in pF , then the set of remainders

(residue classes) modulo)(xf is a finite field of order
mp ,

denoted mp
F . This is the most important example, because it

turns out that all the finite fields are isomorphic to mp
F . We will

discuss this example in detail later.

2.2 Brief Summary
Here we present a brief summary of results on finite fields, which

are important for coding and scrambling. The rest of the section

will explain the concepts in more detail.

2.2.1 Existence and Uniqueness

For each prime p and positive integer 1m , there exists a finite

field mp
F with

mp elements and there exists no finite field

with q elements, if q is not a prime power. Any two fields

with
mp elements are isomorphic.

2.2.2 Construction

The integers modulo p form a prime field pF under modulo

p addition and multiplication. The polynomials][xFp over

pF modulo an irreducible polynomial][)(xFxg p of degree

m form a finite field with
mp elements under mod-g(x) addition

and multiplication. For every prime p , there exists at least one

irreducible polynomial][)(xFxg p of each positive

degree 1m , so all finite fields may be constructed in this way.

2.2.3 Structure

Under addition, mp
F is isomorphic to the vector space

m

pF)(.

Under multiplication, the nonzero elements of mp
F form a cyclic

group

 },,,,1{ 22 mp  ,

generated by a primitive element mp
F .

The elements of mp
F are the

mp roots of the polynomial:

 m

m

p

p Fxx 

The polynomial xx
mp  is the product of all monic irreducible

polynomials][)(xFxg p such that))(deg(xg divides m .

The roots of a monic irreducible polynomial][)(xFxg p form

a cyclotomic coset of))(deg(xg elements of mp
F which is

closed under the operation of raising to the p -th power.

For n that divides m , mp
F contains a subfield with

np elements.

  0 1  2

 0 0 0 0 0

 1 0 1  2

  0  2 1

2 0
2 1 

 0 0

 1 1

  

1 2

2.3 The Additive Structure

The field mp
F can be viewed as a m dimensional vector space

over pF . Therefore, the addition is simply the vector, i.e.,

component-wise, addition.

More formally,),(F is a finite Abelian group. The

Fundamental theorem on Abelian groups, applied to the finite

case, states that any finite Abelian group is isomorphic to the

direct sum (product) of building blocks)(qZ , with

mpq  and p a prime:

)()()(tZrZqZ  

For example, this theorem helps us find all Abelian groups of

order 8: the cyclic group)8(Z ,)4()2(ZZ 

and)2()2()2(ZZZ  . It also implies that there is only one

Abelian group of order 6 and that the cyclic group)6(Z must be

isomorphic to)3()2(ZZ  . We will see that this theorem has

deep consequences for the structure of finite fields.

2.4 The Multiplicative Structure

The field mp
F is determined by the fact that),(* F is a cyclic

group – a fact which is not obvious, so we briefly explain it. First,

we need some tools from cyclic groups.

2.4.1 Cyclic Groups and Subgroups
A cyclic group is a group with a single generator. Any cyclic

group of order n is isomorphic to nZ . If g is an element of a

group G, then the cyclic group)(gC , generated by g, is always

a subgroup G and by Lagrange’s theorem its order divides the

order of G. In the case where nZG  , the order of)(mC is the

least positive integer k, such that nkm mod0 , i.e., such that

the integer product km is divisible by n . Thus km is the least

common multiple of m and n , denoted by),(nmlcm and the

order of)(mC is:

),gcd(

),(
|)(|

nm

n

m

nmlcm
kmC 

For example, suppose 10n and 4m .

Then }0,6,2,8,4{)4(C and 5|)4(| C consistent with

5
4

20

4

)10,4(
|)4(| 

lcm
C and

5
2

10

)10,4gcd(

10
|)4(| C .

We see that nZmC )(if and only if m and n are relatively

prime.

2.4.2 The Euler Number

The number of integers in the set }1,,2,1,0{ n that have

order n (are relatively prime to n) is called the Euler number

and is denoted by)(n . For example, in 10Z , the integers which

are relatively prime to 10, are }9,7,3,1{ , so 4)10( . Apart

from the four elements of order 10, 10Z also has elements of

order 1, 2 and 5, because those are the integers that divide10.

There is one element of order 1, namely 0, and

1}0{)0(ZC  . There is one element of order 2, namely 5,

and 2}5,0{)5(ZC  . There are 4 elements of order

5, namely 2, 4, 6 and 8 and

5}8,6,4,2,0{)8()6()4()2(ZCCCC  .

In general, nZ has a cyclic subgroup of order d for each positive

integer d that divides n , including 1and n . dC consists of

}
)1(

,,
2

,,0{
d

nd

d

n

d

n 
 and is isomorphic to dZ . dC thus

contains)(d elements that are relatively prime to d , each of

which has order d and generates dC . The remaining elements of

dC belong also to smaller cyclic subgroups.

For example, 10Z has a subgroup }8,6,4,2,0{5 C with 5

elements. Four of these elements, namely }8,6,4,2{ , are

relatively prime to 5 and generate 5C . The remaining element

of dC , namely 0, has order 1.

Since every element of nZ has a definite order d that divides n ,

we can express n as a sum over all possible orders d of the

number of elements of that order, which is)(d . This gives:

 
ndd

dn
|:

)(

All Euler numbers may be determined recursively from this

expression. For example, 1)1( , 1)1(2)2(  ,

2)1(3)3(  , 2)2()1(4)4(  , .

2.4.3 The Prime Subfield of a Finite Field

Let qF be a finite field with q elements. We want to show that

q has to be a power of a prime p , i.e.,
mpq  and we will use

the Primary Subfield as the main tool.

Consider the cyclic subgroup)1(C of qF generated by the unit

element1 . By the cyclic group theorem,)1(C is isomorphic

to nZ and its elements may be denoted by }1,,2,1,0{ n ,

with mod-n addition.

By the distributive law in qF , the product ji * (in qF) of two

nonzero elements in)1(C is simply the sum of ij ones, which as

an element of nZC )1(is nij(mod) . Since this is the

product of nonzero elements of qF , by the field

axioms nij(mod) must be nonzero. This will be true if and only

if n is a prime number p . Thus)1(C is a subfield of qF with a

prime number p of elements and hence isomorphic to pF . Thus

the elements of)1(C , which are called the integers of qF , may

be denoted by }1,,2,1,0{  pFp  . The addition and

multiplication of qF reduce to modulo p addition and

multiplication in pF . The prime p is called the characteristic

of qF . Since the p -fold sum of the identity1with itself is 0 , the

p -fold sum of any element qF with itself is also 0 , which

means 0p . In summary, the integers of a field qF , form the

prime subfield qp FF  with p elements, where p is the

characteristic of qF .

2.4.4 The Ring of Polynomials over a Field

The set][xF of polynomials over a field F has all the properties

of a field, except that a nonzero polynomial may not have an

inverse. Such a structure is called an integral domain, that is, a

commutative ring with identity and no divisors of zero and it is

a generalization of the ring of integers Z . The set of polynomials

][xF has several other important properties: it is a Euclidean

domain, a principal ideal domain and a unique factorization

domain.

2.4.4.1][xF Is a Euclidean Domain

Euclidean domain simply means that polynomials have the Euclid

property, which describes what happens in polynomial division:

for any pair of polynomials][)(),(xFxgxf  , there exist a

unique quotient polynomial][)(xFxq  and a unique

remainder polynomial][)(xFxr  with a smaller degree than

the degree of the divisor polynomial)(xg , that is

))(deg())(deg(xgxr  , and:

)()()()(xrxgxqxf  .

2.4.4.2][xF Is a Principal Ideal Domain (PID)

In a ring R , an ideal I is a sub-ring with the “absorbing”

property IRI  . It is easy to see that this is the right property

that allows forming the quotient ring IR / .

A principal ideal is an ideal with a single generator g and can

be denoted by  g . In other words,  gRg . An

integral domain in which every ideal is principal is called a

principal ideal domain (PID). For example, the integers Z are a

PID. In fact, every Euclidean domain is a PID, because

),gcd(, gfgf , as can be easily verified using the

Euclid algorithm. Therefore,][xF is a PID.

We are interested in constructing fields and the construction will

involve division by an ideal, so the natural question is “Under

what conditions is quotient a field?” The answer: if and only if the

ideal is maximal (the only ideal containing it is the ring itself).

In][xF , maximal principal ideals are generated by irreducible

polynomials (polynomials which cannot be factored in][xF).

This yields a tool for constructing finite fields: divide][xF by an

ideal generated by an irreducible polynomial.

2.4.4.3][xF Is a Unique Factorization Domain

By definition, every monic (leading coefficient1) polynomial is

either irreducible, or it can be factored into a product of monic

polynomial factors, each of lower degree. In turn, if a factor is not

irreducible, it can be factored further. Following this process, we

eventually arrive at a product of monic irreducible polynomials.

This factorization is unique (up to the order of the factors), so

][xF is a Unique Factorization Domain.

Note that the unique factorization property may not hold, if the

coefficients are not from a field. For example,

consider][8 xZ and the polynomial 12 x . It can be factored in

more than one way:

)3)(3()1)(1(12  xxxxx

2.4.5 Irreducible Polynomials
A polynomial is irreducible (prime), if it cannot be nontrivially

factored. Irreducible polynomials are important because they

generate finite fields. All finite fields can be viewed as

polynomials where addition and multiplication are defined

modulo an irreducible polynomial. In a sense, the search for

finite fields becomes the search for irreducible polynomials. This

is analogous to searching for prime numbers and the Sieve of

Aristothenes can be used in both cases.

For integers, the method goes as follows. Start with a list of

integers greater than1 . The first integer on the list is 2 , which is

prime. Erase all multiples of 2 (even integers). The next

remaining integer is 3 , which must be the next prime. Erase all

multiples of 3 . The next remaining integer is 5 , which must be

the next prime. Erase all multiples of 5 . And so forth.

Similarly, to find all prime (irreducible) polynomials in][2 xF ,

for example, first list all polynomials of degree1or more

in][2 xF , in order of degree. (Note that all nonzero polynomials

in][2 xF are monic.) No degree1polynomial can have a factor,

so the two degree1polynomials, x and 1x , are both prime.

Next, erase all degree 2 multiples of x and 1x , namely

2x , xx 2
and 12 x from the list of degree 2 polynomials.

This leaves one prime (irreducible) degree 2 polynomial,

namely 12  xx . Next, erase all degree 3 multiples of

x , 1x and 12  xx from the list of eight

degree 3 polynomials, namely the six polynomials:

3x ,
23 xx  , xx 3

, xxx  23
, 13 x and

123  xxx . The first four obviously contain x as a

factor. The last two (and also the second and third)

contain 1x as a factor. That is easily seen by observing that any

polynomial in][2 xF with an even number of coefficients has

1as a root and therefore contains 1x as a factor. After erasing

the six reducible polynomials from the eight

degree 3 polynomials, the remaining two

polynomials 13  xx and 123  xx must be prime. This

process yields three prime polynomials of degree four:

14  xx , 134  xx and 1234  xxxx .

Continuing in this, we may list all prime polynomials in][2 xF ,

up to any desired degree. It turns out that there is at least one

irreducible polynomial of every degree. This means that there

exists a finite field mF
2

for every m .

2.4.6 Primitive Polynomials

A primitive element of a finite field qF is an element whose

multiplicative order is 1q . This means that all the nonzero

elements of the field qF can be written as:

 },,,,,1{ 232 q  .

An irreducible polynomial, which has a root which is a

primitive element, is called a primitive polynomial. While every

irreducible polynomial can be used to generate a finite field,

primitive polynomials are especially convenient, because they

provide an explicit representation of the field elements as powers

of the primitive root .

2.4.7 The Field 32
F

Primitive polynomials offer the most convenient tool for

constructing finite fields. The field is the set of remainders

modulo the generator primitive polynomial, the addition is the

vector addition and the multiplication is cyclic. The logarithmic

table gives the correspondence between the additive and the

multiplicative representations. For the field 32
F , we construct the

field with the primitive polynomial 13  xx and the result is

presented in Table 2.4.

Table 2.4. Logarithms in 32
F

The table indeed contains all the elements in 32
F ,

because 17  . There is a second primitive polynomial of

degree three, namely 123  xx , so it may appear that there is

another field 32
F . However, the two fields obtained by the two

polynomials are isomorphic.

2.4.8 The Field 42
F

Following the construction of 32
F in the previous section, we

construct 42
F using the primitive polynomial 14  xx . The

result is summarized in Table 2.5. If we used the second primitive

polynomial of degree four, namely 134  xx instead, we

would obtain the same field in a similar manner. However, if we

used the polynomial 1234  xxxx , which is

irreducible, but not primitive, then powers of a root would not

be sufficient, because the element is not primitive. Instead, we

would have to use both powers and linear combinations, or find

another element  , which is primitive.

Table 2.4. Logarithms in 42
F

0

1



2

13 

  24

125  

126 

0

1



2

3

14 

  25

236  

137  

128 

  39

1210  

  2311

12312  

12313  

1314 

The table lists all of the elements of 42
F , because 115  .

2.4.9 Minimal Polynomials
Similarly as irreducible and primitive polynomials can be used to

construct finite fields, minimal polynomials are useful in

constructing binary codes. A minimal polynomial of a field

element is the binary polynomial of smallest degree, which

has as a root. It can be computed in terms of conjugates, which

we define next.

2.4.9.1 Conjugates
The roots of polynomials with binary coefficients occur in

conjugates, similarly as complex roots of polynomials with real

coefficients occur in conjugate pairs. For example, the polynomial

12 z has complex roots i and i . Note that the same

polynomial, usually written as 12 x , when considered with

binary coefficients, has a double root 1x , so we need to

consider an irreducible polynomial with binary coefficients and

there is exactly one such polynomial: 12  xx . It has roots

 and
2 in)2(2GF . The analogy with complex roots end

here, though, because while complex conjugate roots always

appear in pairs, Galois extension field conjugates may appear in

larger sets. If is a field element of)2(mGF , then the

conjugates of  are:

  ,
2 ,

4 ,
8 ,…,

12 r



where r is the smallest integer such that  
r2

. For example,

the conjugates of
3 in)2(3GF are

623)(  and
51243)(  . The conjugate elements

in Galois fields)2(2GF ,)2(3GF and)2(4GF are presented

in Table 3.1, Table 3.2 and Table 3.3, respectively.

Table 3.1. Conjugate elements in)2(2GF

Conjugates Order

1 1

  ,
2 3

Table 3.2. Conjugate elements in)2(3GF

Conjugates Order

1 1

  ,
2 ,

4 7

3 ,

5 ,
6 7

Table 3.3. Conjugate elements in)2(4GF

Conjugates Order

1 1

  ,
2 ,

4 ,
8 15

3 ,

6 ,
9 ,

12 5

5 ,

10 3

7 ,

11 ,
13 ,

14 15

Note that conjugate elements have the same order and therefore if

an element is primitive, all its conjugates are also primitive.

Recall that the order of an element divides 12 m
and so if

12 m
is prime, the field elements will have order 12 m

and be

primitive. For example, all elements of)2(3GF have order 7

and are primitive. On the other hand, some elements of have order

less than 15 and are non-primitive.

One of the properties of conjugates is that they provide a

mechanism for going from an extension field to its base field.

Similarly as 1))((2  ziziz yields a real polynomial,

)(1))()((342 xmxxxxx   is a

binary polynomial. Note that the product contains a factor for

each conjugate. The polynomial)(xm is the binary polynomial

of smallest degree, which has  as a root and is called the

minimal polynomial of . Note that all conjugates have the same

minimal polynomial.

2.4.9.2 Examples of Minimal Polynomials
Minimal polynomials can be computed for each conjugate class

by multiplying together factors corresponding to the conjugates.

Results for)2(2GF ,)2(3GF and)2(4GF are presented in

Table 3.4, Table 3.5 and Table 3.6, respectively.

Table 3.4. Minimal Poynomials in)2(2GF

Conjugates Minimal Polynomial

0 x

1 1x

  ,
2 12  xx

Table 3.5. Minimal Polynomials in)2(3GF

Conjugates Order

0 x

1 1x

  ,
2 ,

4 13  xx

3 ,

5 ,
6 123  xx

Table 3.6. Minimal Polynomials in)2(4GF

Conjugates Order

0 x

1 1x

  ,
2 ,

4 ,
8 14  xx

3 ,

6 ,
9 ,

12 12  xx

5 ,

10 1234  xxxx

7 ,

11 ,
13 ,

14 134  xx

3. CODING
Suppose that we wish to transmit a sequence of binary digits

across a noisy channel. If we send a 1, a 1 will probably be

received. If we send a 0, a 0 will probably be received.

Occasionally, however, the channel noise will cause a transmitted

1 to be mistakenly interpreted as a 0 or a transmitted 0 to be

mistakenly interpreted as a 1 [Berlekamp]. The goal of coding is

to reduce the undesirable effect of the noisy channel, i.e., to detect

and correct the channel errors. This is achieved via redundancy.

3.1 Block Codes
In a block code, we take a message of k digits, which we wish to

transmit, annex to them r check digits and transmit the entire

block of n = k + r channel digits. Assuming that the channel noise

changes sufficiently few of these n transmitted channel digits, the

r check digits may provide the receiver with sufficient information

to enable her to detect and correct the channel errors.

3.1.1 Binary Block Codes
Binary block codes are block codes with digits 0 and 1.

Codewords in binary block codes are n-tuples of zeros and ones,

and therefore elements of
nGF)2(.

3.1.2 The Hamming Geometry
Hamming defined the notions of length and distance in

nGF)2(which, from the point of view of coding, are more

natural than the Euclidean length and distance, and still make
nGF)2(a metric space.

3.1.2.1 The Hamming Weight

For every
nGFx)2( , the Hamming weight:

)()(xesInNumberOfOnxwH  .

The Hamming weight has all the properties of a norm:

a) strict positivity: 0)(xwH , with equality if and only

if 0x ;

b) symmetry:)()(xwxw HH  (since xx );

and

c) triangle inequality:

).()()(ywxwyxw HHH 

Therefore,),)2((H

n wGF is a norm space.

3.1.2.2 The Hamming Distance
Every norm induces a metric or distance by considering the norm

of a difference and so Hamming weight (norm) Hw defines the

Hamming distance)(),(yxwyxd HH  . The Hamming

distance has all the properties of a metric, so),)2((H

n dGF is

a metric space, called the Hamming space.

Especially important is the minimum Hamming distance d

between a pair of codewords, because it determines how many bit

errors can be corrected or detected. In particular, at most d-1 bit

errors can be detected, or at most (d-1)/2 bit errors can be

corrected.

3.1.3 Simple Examples
Among the simplest examples of block codes are the repetition

code, the simple parity check code and the ISBN code. We will

use them later to illustrate concepts and to construct more

complicated codes.

3.1.3.1 The Repetition Code
Simple examples illustrating the redundancy principle are the

repetition codes, which have 1k , r arbitrary, and 1 rn ,

and contain only two code-words: the sequence of n zeros and the

sequence of n ones. The first digit is the message digit and the

rest are the check digits. The decoder might use the simple

majority rule to decode: count the number of zeros and the

number of ones in the received bits; if there are more zeros than

ones, decide that the all-zero codeword was sent; if there are more

ones than zeros, decide that the all-one codeword was sent; if the

number of zeros equals the number of ones, do not decide, i.e.,

declare a decoding failure. This decoding algorithm will decode

correctly in all cases where the channel noise changes less than

half of the digits. If the channel noise changes more than half of

the bits, the decoder will commit a decoding error.

It is possible to make tradeoffs between decoding errors and

decoding failures by modifying the decoding algorithm. For

example, an extremely cautious decoder might decode the all-zero

word into itself, the all-one word into itself and fail to decode in

all other cases. Such an algorithm would detect more errors (at the

cost of correcting none) and might be appropriate in cases where a

decoding error would result in a disaster.

If the block length is sufficiently large, the repetition code

succeeds in making the probability of decoding error arbitrarily

small. This comes at a price, which is inefficiency: the

information rate is only
n

R
1

 . We are usually interested in

codes with higher information rates.

3.1.3.2 The Single Parity Check
Extreme examples of high-rate codes are single parity check

codes, which contain only one check digit. Usually the check digit

is chosen so that it results in an overall even parity.

3.1.3.3 The ISBN Code
The International Standard Book Number (ISBN) code, which is

used on nearly all recently published books, is a block code

which is not binary [Roman]. An ISBN has 10 digits. The first

digit indicates the language of the book, the next three digits

denote the publisher, the next five digits represent the book

number, assigned by the publisher, and the last digit is a

redundant check digit, designed to detect errors. The check digit is

the solution of the equation:

 01032 10321  xxxx 

in the field)11(GF .

In this report we focus on binary block codes, i.e., codes with

digits 0 and 1, because we are interested in applications in

communications over binary channels.

3.1.4 Hamming Codes
Hamming was the first coding theorist whose work attracted

widespread interest [Early Papers]. In 1950, he constructed a

family of single error correcting codes, that is, codes with

minimum Hamming distance 3d , by combining even parity

checks over selected information positions.

3.1.4.1 Two Parity Checks
We first illustrate the Hamming construction with the case of 2

parity check bits, i.e., with 2r . In the case of no errors, both

parity check bits will be zero. If either parity check is nonzero,

that is a symptom of an error. Motivated by medical diagnostic

terminology, the collection of all (in this case two) the symptoms,

is called a syndrome. With two parity check bits, there are 3

nonzero syndromes. Therefore, the syndrome contains enough

information to locate a single bit error in a three bit word, so

3n and 1k . In other words, we are talking about the three

bit repetition code.

Next, we determine over which positions parity checks should act.

If the first parity check is applied over the positions 1 and 3 and

the second over 2 and 3, then the binary representation of the bit

position can be used to indicate whether the bit participates in the

specific check. For example, 1=01, so the first bit participates in

the first, but not the second parity check. Similarly, 2=10, so the

second bit participates in the second, but not the first parity check

and 3=11, so the third bit participates in both parity checks.

Finally, we determine which bits are information bits and which

are check bits. The check bits can be chosen to be in positions of

powers of 2, in this case, the first and second position. The

remaining third bit is then the information bit.

3.1.4.2 Three Parity Checks

The 2r case is too simple to justify the reasoning via the

Hamming construction, so we need one more example to illustrate

the theory and we proceed with the 3r case. Now we have

7123  nonzero syndromes which allow the code-word

length 7n and the number of information

bits 437 k . The check bits are in positions of powers of

two: first, second and fourth. The remaining bits, the third, the

fifth, the sixth and the seventh, are the information bits. The first

parity check is over bits which have a 1 in the least significant bit:

1, 3, 5 and 7. The second parity check is over bits 2, 3, 6 and 7;

and the third check is over bits 4, 5, 6 and 7.

To see error correction at work, let us look at an example. Say we

want to transmit the information word 1011. First we toss the bits

into the information bits slots of the code-word:

110_1__ , then follow with the first parity

check (over bits 1, 3, 5 and 7) to fill the first bit with 0 and obtain

110_1_0 , the second parity check (over bits

2, 3, 6 and 7) to fill the second bit with 1:

110_110 and the third parity check (over bits

4, 5, 6 and 7) to fill the fourth bit with 0 and obtain the code-word

1100110 , which we transmit. Suppose the

channel noise corrupts the third bit so that

1100010 is received. The decoder checks the

three parity checks and the first two fail, because they contain the

corrupted bit, and the third succeeds. The syndrome, which

consists of the error symptoms packed from right to left, i.e., from

the least significant bit towards the most significant bit, is 011.

When read as the binary representation of the number 3, it

indicates that the third bit is corrupted. The decoder corrects the

corrupted third bit and correctly decodes into

1100110 , from which the message can be read

by looking at the information bits 3, 5, 6 and 7. The result is the

original message 1011.

3.1.4.3 The General Case
Let r denote the number of check bits. Then the number of

syndromes is
r2 and the number of nonzero syndromes

is 12 r
. The 0 syndrome represents the state of all received bits

being correct. The 12 r
nonzero syndromes represent all single

error locations and we assume no double or higher order errors.

We need to have at least n syndromes, in order to represent all the

single errors: nr 12 . The equality represents the optimal

case nr 12 , which maximizes the code length and

consequently the code rate. It is not obvious that such codes can

be constructed, but Hamming showed they can.

Table 1. Hamming codes

Number of

parity

checks r

Length

12  rn

Number of

message bits =

dimension

rnk 

Number of

codewords
k2

1 1 0 (useless) 1

2 3 1 (repetition) 2

3 7 4 16

4 15 11 2048

5 31 26 826 102 

6 63 57 1757 102 

… … … …

r 12 r rr 12 rr 122

In addition, Hamming demanded that the syndrome gives the

actual position of the error. This implies that every position that

has a 1 in its binary representation must be in the first parity

check. Thus we see that the first parity check covers position

1,3,5,7,9,11,13,15, …; the second, 2,3,6,7,10,11,14,15,…; the

third, 4,5,6,7,12,13,14,15,…; and so on.

Hamming also demanded that codes of different lengths should

have message bits in the same positions (and consequently parity

check bits in the same positions). If we start filling the codeword

with parity check bits and insert message bits, whenever allowed

by the nr 12 inequality, then bits 1,2 are parity check bits,

bit 3 is a message bit, bit 4 is a check bit, bits 5,6,7 are message

bits, bit 8 is a check bit, bits 9,…,15 are message bits, bit 16 is a

check bit, etc., and the pattern emerges that bits at powers of 2

locations are check bits and the rest are message bits. This

constructively proves the existence of error correcting codes of

arbitrary large length.

3.1.5 Maximum Likelihood Decoding
If the decoder receives an n-tuple , which is not a codeword, it

attempts to decide, which message was sent. Since each message

results in a codeword being transmitted and since under

reasonable channel noise conditions a single bit error is a low

probability event, a double bit error is less likely than a single bit

error, and the probability for an n bit error decreases with n., the

most likely codeword to have been sent is the one which is the

smallest number of bit errors away from the received n-tuple, that

is, the one which is closest, in Hamming distance, to the received

n-tuple. In maximum likelihood decoding, the decoder checks the

distances to all the codewords and picks the closest codeword.

This is conceptually simple, but there is a problem: the number of

codewords increases exponentially with the code length, so the

complexity of the maximum likelihood is exponential. In other

words, the maximum likelihood algorithm is not practical for

large codelengths.

This is the central problem in coding and results in the need to

impose more structure on codes and then use the structure to

develop faster decoding algorithms.

3.2 Linear Codes
Hamming codes impose several even parity checks on the bit

sequence to define code-words. In other words, code-words are

solutions of a system of linear equations, over)2(GF , of

course. In the linear algebra language, the code (the set of code-

words) is the nullspace of the matrix of coefficients of the system

of equations, called the parity check matrix. Note that the

nullspace is always a linear subspace (vector subspace) and

therefore a linear space (vector space).

It is natural then to relax the constraints of the Hamming

construction and study the properties of codes which are linear

spaces. Such codes are called linear codes. More precisely, linear

codes are k dimensional subspaces of
nR .

Linear algebra tells us that the two points of view, parity check

matrix and subspace, are complementary. This is because every

subspace can be viewed as the nullspace of the projection matrix

onto that subspace and the parity check matrix is the projection

matrix. Conversely, as already mentioned, the parity check matrix

defines its subspace, which is a linear space.

A third point of view is to focus on the encoding process, which is

a mapping from
kR into

nR , whose range is the code. This

mapping is linear and is an embedding (1-1 mapping). Therefore

it can be represented by a matrix, called the generation matrix G.

The parity check matrix is then conveniently called H.

To summarize, if
kRm is the message, then the

corresponding codeword
nRc is given by mGc  and

0TcH . We follow the coding literature convention, where

the transpose of the H matrix is used for convenience – easier

formatting of formulas in text, when each row represents one

parity check. Furthermore, as in the coding literature, the

convention is to represent vectors as rows and put them on the left

of the matrices, because then it is easier to think of the

corresponding block diagram picture: the message m passes

through the block G to become a codeword and then passes

through the block H and gets annihilated. Others, for example,

Wikipedia, follow the mathematics convention, where matrices

are on the left and vectors on the right. Notice that by combining

the generation and the check equations, we obtain

0)()( TTT GHmHmGcH , for every
kRm ,

which implies 0TGH .

3.2.1 Examples
The repetition code, the even single parity check code and the

Hamming codes are all linear codes, while the odd single parity

check code and the ISBN code are not linear. For the three linear

codes examples, we construct the generation matrices and the

parity check matrices. We also note the extreme cases, where the

dimension k is 0 or n.

3.2.1.1 The Trivial, or (n,0), Code
For every length n code, the smallest possible dimension of the

code is k=0. This code has only one codeword, namely the 00…0

codeword. This code is called the trivial code and is not useful.

3.2.1.2 The Universe, or (n,n), Code
On the other extreme is the universe code, which has dimension

k=n, where the code is the whole space, that is, every word is a

codeword. This simply means that all messages are transmitted in

their original form, without being encoded.

3.2.1.3 The Even Single Parity Check Code
The code consisting of all n-tuples with an even number of ones is

an (n,n-1) linear binary code, called the even-weight of single

parity check (SPC) code of length n. Of all the (n,n-1) linear

binary codes, the SPC is the most important, so when we say the

(n,n-1) code, we will mean the SPC.

3.2.1.4 The Repetition Code
Every linear code contains the 00…0 codeword. The smallest

nontrivial codes contain only one other codeword and are

dimension 1, or (n,1), codes. In order to maximize the Hamming

distance between the two codewords, we choose the nonzero

codeword to be 11…1. This is the repetition code of length n. We

will reserve the (n,1) notation for the repetition code.

The repetition code can be represented by the generating matrix

G:

]|[]1...111[1 PIG 

The corresponding parity check matrix H is:



















 

1...001

...........

0...101

0...011

]|[1n

T IPH

3.2.1.5 The (7,4) Hamming Code
All Hamming codes are linear codes because they are constructed

as nullspaces of the parity check matrix H, where each row

corresponds to one of the parity checks. If we follow the

Hamming construction directly, by putting ones in places which

contribute to the parity check and zeros elsewhere, then the parity

check matrix H is:



















1111000

1100110

1010101

H

The corresponding generating matrix G has columns 3,5,6,7 equal

to the columns of the identity matrix 4I , because the 3,5,6,7

codeword bits are the message bits. This partially determines the

generating matrix G:





















100_0__

010_0__

001_0__

000_1__

G

The rest of the matrix G can be determined by observing the

identity 0TGH . The 1,2,4 codeword bits are parity check

bits, so the 1,2,4 columns of the H matrix are columns of the

identity matrix 3I . If we write the remaining bits of each row of

the H matrix in the corresponding column of the G matrix, we

obtain:





















1001011

0101010

0011001

0000111

G

This agrees with the definition of the G and H matrices in the

Wikipedia, except of course, that G is transposed.

3.2.2 Systematic Codes
It is often convenient to group the message bits together at the

beginning or at the end of the codeword. This bit reordering

corresponds to reordering of the columns of G and H and yields

what is called an equivalent code.

For example, the (7,4) Hamming code written as a systematic

code has the generator matrix G:

]|[

1101000

0110100

1110010

1010001

4 PIG 





















The corresponding H matrix can be obtained simply by:



















1001011

0101110

0010111

]|[3IPH T

To encode a message, simply multiply it by G. For example, if the

message is]0011[m , the codeword is:

 0100011]0011[ GmGc

All the codewords of the (7,4) code can be obtained by

multiplying all the 16 messages by the generating matrix G. The

result is summarized in Table 2.

Table 2. Hamming (7,4) systematic codewords

Counter Message m Codeword c=mG

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 0 1 1

2 0 0 1 0 0 0 1 0 1 1 0

3 0 0 1 1 0 0 1 1 1 0 1

4 0 1 0 0 0 1 0 0 1 1 1

5 0 1 0 1 0 1 0 1 1 0 0

6 0 1 1 0 0 1 1 0 0 0 1

7 0 1 1 1 0 1 1 1 0 1 0

 8 1 0 0 0 1 0 0 0 1 0 1

 9 1 0 0 1 1 0 0 1 1 1 0

 10 1 0 1 0 1 0 1 0 0 1 1

 11 1 0 1 1 1 0 1 1 0 0 0

 12 1 1 0 0 1 1 0 0 0 1 0

 13 1 1 0 1 1 1 0 1 0 0 1

 14 1 1 1 0 1 1 1 0 1 0 0

 15 1 1 1 1 1 1 1 1 1 1 1

3.2.3 Distance Invariance
In general, all pairs of codewords need to be checked in order to

find the minimum Hamming distance. For linear codes, it is

enough to check the Hamming weights, because the minimal

Hamming distance equals the minimal Hamming weight: d=w.

This is a consequence of the distance invariance property, which

we now describe.

For linear codes C, if c is a codeword:

 CCc 

This means that the code is invariant under translations by

codewords. Since)(),(yxwyxd HH  , the distance

profile from any codeword (the set of Hamming distances to all

the other codewords) equals the distance profile from any other

codeword and in particular the distance profile from 0, which is

the weight profile.

Geometrically speaking, the code looks the same no matter at

which codeword the observer is sitting. Consequently, the

minimal Hamming distance equals the minimal Hamming weight:

d=w.

3.2.4 Orthogonality in Hamming Space
The concept of orthogonality is defined in Hamming space the

same way it is defined in Euclidean space, namely through the

inner product – two vectors x


and y


are orthogonal, if and only

if their inner product is 0:

 



n

i

ii yxyx
1

0


However, orthogonality in Hamming space has several surprising

properties. For example, a vector can be orthogonal to itself. As

an example, take any vector with an even number of ones.

Furtherrmore, the projection theorem does not hold and

consequently the Gramm-Schmidt process cannot be used to

orthogonalize bases. For example, the (3,2) SPC code C = {000,

011, 101, 110} does not have an orthogonal basis.

3.2.5 Dual Codes
Since the orthogonal complement of a vector subspace is again a

subspace, the orthogonal complement of an (n,k) code C is an

(n,n-k) code
perpC , called the dual code of C. If G is the

generator matrix for C, then the rows of G are a basis for C and if

H is the parity check matrix for C, then we have seen that

0TGH . This means that the rows of H are orthogonal to C,

so they can be viewed as a basis for
perpC and H can be viewed

as a generator matrix for
perpC and G can be viewed as a parity

check matrix for C.

The dual code of the dual code is the original code. The dual code

of the universal code is the trivial code and vice versa. The dual

code of the repetition code is the single parity check code. Since

for n=2, the repetition code is the same as the SPC code,

C={00,11}, this code is a self dual code. The dual of the (7,4)

Hamming code is the (7.3) code whose generating matrix is the

Hamming (7,4) parity check matrix H.

3.3 Cyclic Codes
Linear codes which are invariant under the cyclic shift are called

cyclic codes. In other words, in a cyclic code, a cyclically shifted

codeword is again a codeword. Explicitly, for every

codeword][011 cccc n  , the (left) shifted

codeword:

][][102011   nnn ccccccSSc  ,

is also a codeword.

For example, the repetition code is obviously cyclic, because each

codeword by itself is shift invariant. The Hamming (7,4) is also

cyclic, as can be easily checked using Table 2. In particular , the

0th and 15th codewords are invariant, while the rest of the

codewords form two length 7 orbits under the shift S:

 1812611521: S

 39410131473: S

An example of a code which is linear but not cyclic is the (5,2)

code with the generator matrix:

 









11010

01101
G

Note that the (left) shift of the codeword 01101 is

10110 , which is not a codeword.

3.3.1 Additional Operation: Convolution
Cyclic codes enrich the vector space structure of linear codes by

adding the operation of cyclic convolution of two vectors. The

reason the convolution must be cyclic is that the operation must

be internal. The resulting algebra is isomorphic to the ring of

binary polynomials of degree n modulo the polynomial 1nx ,

viewed as an algebra over
n

F2 . We denote this algebra by nV .

To see why we need to mod out 1nx , consider multiplying

1nx by x . Without modding out, the result would be
nx , which

is not in the algebra, because the degree is too high, and the

polynomial multiplication would fail to be an internal operation.

After modding out, the polynomial multiplication is an internal

operation and it corresponds to the cyclic convolution, if we view

polynomials as vectors. This isomorphism between the algebra of

polynomials and vectors allows us to identify vectors with

polynomials and in the rest of the report we will be switching

freely between the two notations.

3.3.2 Hardware Implementation
The great practical importance of cyclic codes is that they can

easily be implemented in hardware.

In hardware implementations, the polynomial algebra can be

implemented with linear shift registers. The is based on the basic

capability of the flip-flop element, which is a storage element

regulated by an external clock, to implement a delay: the input to

the flip-flop appears as its output one unit of time later.

Consequently the flip-flop can implement the cyclic shift, i.e.,

multiplication by x and a series of flip-flops connected into a

shift register can represent a polynomial.

The goal of hardware encoding and decoding of cyclic codes will

therefore be achieved, if we can show that encoding and decoding

can be reduced to polynomial operations. We will do this later in

this section.

3.3.3 Cyclic Codes as Ideals

A linear code C is cyclic if and only if it is an ideal in nV . At

first sight it may appear that it is harder to be an ideal than a

cyclic code, because if the product of any codeword and any

element (polynomial) in nV is in nV , then in particular the product

of a codeword and x is in nV . However, the two notions are

indeed equivalent, because multiplication by any polynomial can

be built from repeated multiplication by x and linearity.

All ideals (cyclic codes) in nV are principal, i.e., generated by a

single generator polynomial)(xg , which is the minimal

degree nonzero codeword. Therefore, we can say that the code is

generated by g and write)(gC  . Since Cg , it is obvious

that the ideal generated by)(xg is contained in C , i.e.,

Cg )(. To see that the converse is true, use Euclid’s

property, i.e., if s is another codeword Cs , then divide

g into it: rgfs  , where the degree of r is smaller than

the degree of g . Since s and g are codewords, so is r .

Therefore, 0r , or else g cannot be the minimal degree

nonzero codeword. From gfs  we see that g divides s and

therefore)(gC  . It is easy to see that the generator

polynomial g is unique, if we require that it is monic (leading

coefficient 1), for if there were another 'g such that)'(gC  ,

then g and 'g would have to divide each other and that is only

possible if they are equal.

 We will show later that the Hamming (7,4) code is generated by

the polynomial 1)(3  xxxg .

3.3.4 Factoring 1nx

The generator polynomial g divides 1nx [2]. This follows

from Euclid’s property rgsxn 1 , which by modding

out 1nx implies rgs 0 in nV . Therefore the remainder

r is a codeword and as such it must be zero, or else it would be

the minimal degree nonzero codeword. This means that nV is

never an integral domain and therefore never a principal ideal

domain, because g is always a zero divisor.

In the Hamming (7,4) example, 1)(3  xxxg indeed

divides 17 x and the quotient is 1)(24  xxxxh .

In order to find all cyclic codes, all we need to do is find all

divisors of 1nx . Let t

n gggx 211 be the complete

factorization of 1nx into irreducible polynomials over 2F .

For odd n , 1nx is square free and the factors ig are all

distinct. To see this, notice that 1nx and its derivative do not

have any common factors for odd n . The cyclic codes

)(ii gC  generated by ig are maximal ideals in nV and are

called maximal cyclic codes.

3.4 Bose-Chaudhuri-Hocquenghem (BCH)

Codes
In cyclic codes, code-words have their generating polynomial as a

factor. Therefore, the roots of the generator polynomial are the

roots of the code-words and it is natural to reconsider the cyclic

codes in terms of roots in an extension field - Galois field.

Furthermore, the Galois field techniques can be used as a design

tool to construct codes with a prescribed minimal Hamming

distance. In particular, the Bose-Chaudhuri-Hocquenghem

(BCH) codes are designer t-error correcting cyclic codes with

minimal Hamming distance 12 t constructed using roots in

finite fields.

3.4.1 The Roots of the Hamming Code Generators
The simplest Hamming code is the (3, 1) repetition code, which

has the generator polynomial 1)(2  xxxg with roots

 and
2 in)2(3GF . Note that the generator

polynomial g can be factored into))(()(2  xxxg .

The generator polynomial 1)(3  xxxg of the Hamming

(7, 4) code has roots ,
2 and

4 belonging to)2(3GF and

can be expressed as))()(()(42   xxxxg . We

can think of the generating polynomial as being specified by its

roots. This suggests the idea of designing cyclic codes by

selecting well chosen sets of finite field elements to be the roots of

the generator polynomial. Note that the generator polynomial g is

the minimal polynomial)(xm of .

The generator polynomial of the Hamming (15, 11) code

)(1)(4 xmxxxg  is the minimal polynomial

of in)2(4GF and its roots are ,
2 ,

4 and
8 .

To construct larger length Hamming codes we consider larger

Galois fields and higher degree minimal polynomials. In

particular, we can construct the r check bit Hamming code of

length 12 r
by selecting a degree r generator polynomial as the

minimal polynomial of a primitive element  in the

field)2(rGF .

3.4.2 The BCH Construction
The BCH construction is a generalization of the method used in

the previous section to construct Hamming codes. Instead of

taking the generator polynomial to be the minimal polynomial of a

single element, BCH takes the least common multiple of minimal

polynomials of successive powers of elements. Most often, the

successive powers are of the primitive element and then the

resulting code is called the primitive BCH code. More

specifically, for a t -error correcting BCH code, consider the

sequence of powers of a primitive element in)2(rGF :

  ,
2 ,

3 ,…,
t2 .

Then select the generator polynomial g to be the least common

multiple of the minimal polynomials of the elements in the

sequence:

)](,),()()([)(2321 xmxmxmxmLCMxg t

Note that the even powers in this sequence are redundant, because

they have a conjugate which appears earlier in the sequence and

that conjugate has the same minimal polynomial. In particular, in

the case of Hamming codes, where 1t , it may at first appear

that  and
2 need to be considered, but in fact suffices.

The code length is determined by the Galois field)2(rGF and

is the same as the length of the Hamming codes, namely 12 r
.

3.4.3 BCH Code Examples
We have already seen that single error BCH codes are Hamming

codes. Next, we construct a few examples of double and triple

error correcting BCH codes.

3.4.3.1 Double Error Correcting BCH Codes
The simplest double error correcting BCH code requires the

sequence of four powers of a primitive element :

  ,
2 ,

3 ,
4 .

In)2(3GF these elements have minimal

polynomials 1)()()(3

421  xxxmxmxm and

1)(23

3  xxxm . The least common multiple of these

two polynomials is their product, so the generator polynomial

is)1)(1()()()(233

31  xxxxxmxmxg .

4. LINEAR RECURSIVE SEQUENCES
Linear Recursive Sequences (LRS) over finite fields are the

mathematical foundation for scramblers. For the introduction, we

first illustrate the more familiar LSRs over real numbers, by the

example of Fibonacci numbers. The analysis tools are analogous

to solving linear differential equations with constant coefficients.

4.1 Fibonacci Numbers

The sequence of Fibonacci numbers }{ ts is defined by the initial

condition 00 s , 11 s and the recurrence relation:

 21   ttt sss for 2t

The repeated application of the recurrence relation yields the well

known sequence

5. SCRAMBLING APPLICATIONS
Scrambling is a binary bit-level processing applied to the

transmission signal in order to make the resulting binary sequence

appear more random [Lee – Scrambling Ch2]. A scrambler can be

built from shift registers and exclusive or gates. The

corresponding descrambler can be viewed as a time reversed

scrambler. This means it has the same structure as the scrambler,

but the bit stream passes through it in the opposite direction. The

scrambler and the descrambler need to be synchronized in order to

function properly. Depending on the synchronization method

used, scrambling techniques are classified into three categories:

the frame synchronous scrambling (FSS), the distributed sample

scrambling (DSS) and the self synchronous scrambling (SSS).

In the FSS, the states of the scrambler and descrambler shift

registers get synchronized by being simultaneously reset to the

specified states at the start of each frame. In the DSS, samples

taken from the scrambler shift registers are transmitted to the

descrambler in a distributed manner for use in synchronizing the

descrambler shift registers. In the SSS, the states of the scrambler

and descrambler shift registers are automatically synchronized

without any additional synchronization process.

5.1 Frame Synchronous Scrambling
Frame Synchronous Scrambling employs an autonomous system

consisting of shift registers and exclusive or gates, which is called

the Shift Register Generator (SRG). An SRG can be engineered in

such a way to generate a desired Pseudo Random Binary

Sequence (PRBS) for use in scrambling. In the scrambling part,

the transmission signal is scrambled by adding the PRBS to it and

in the descrambling part the same PRBS is added to the scrambled

signal for the recovery of the original signal. In order for this to

work, the scrambler and descrambler have to be identical and

synchronized to the same state. To achieve this the FSS resets the

scrambler and descrambler SRGs to some predetermined states at

the beginning of each frame. A well known application of an FSS

is in SDH/SONET lightwave transmission system. It is composed

of seven shift registers and one exclusive or gate. The scrambler

and descrambler generate the PRBSs }{ ks and }ˆ{ ks of length

127  . The transmission signal }{ kb is scrambled by adding the

PRBS }{ ks generated by the scrambler SRG. The scrambled

signal }{ kk sb  is descrambled by adding the PRBS }ˆ{ ks ,

generated by the descrambler SRG, which becomes identical

to }{ ks when the descrambler SRG is synchronized to the

scrambler SRG. Therefore, the descrambled signal

}ˆ{ kkk ssb  becomes identical with the original signal

}{ kb in the synchronized state. For this synchronization, the

scrambler SRG state and the descrambler SRG state are both set to

“1111111” at the beginning of each SDH/SONET frame.

5.2 Distributed Sample Scrambling
Distributed Sample Scrambling is similar to FSS, which

scrambles the signal by adding a PRBS generated by an SRG. The

difference between the DSS and FSS lies in the synchronization

method. In the DSS, the samples of the scrambler SRG are

distributed (transmitted) to the descrambler in parallel to the

scrambled signal, where they are used to correct the descrambler

SRG state in such a way that it eventually becomes identical to the

scrambler SRG state. The samples of the scrambler SRG are

usually taken and conveyed over some available slots in the

transmission frame in a distributed manner – hence the name. The

advantage of DSS over FSS is that in DSS the SRGs are NOT

reset at the beginning of each frame and thus the transmission

signal is scrambled by a continuous PRBS stream, resulting in

superior scrambling. This comes at a cost: in DSS, we need to

continuously check whether the descrambler SRGs stay in the

synchronous state.

An example of a transmission system using DSS is the cell-based

ATM. In this system, the scrambler and descrambler consist of 31

shift registers and one exclusive-OR gate and they generate PRBS

of length 1231  . For synchronization, the samples }{ iz of the

scrambler SRG state are taken from the PRBS }{ ks and

distributed to the descrambler over the Header Error Control

(HEC) field of the ATM 53 bit cell. The descrambler generates its

own samples }ˆ{ iz of the SRG state in the same manner and

compares them to the transmitted ones. If the two sets of samples

are identical, no action takes place. If they are different, a

correction logic changes the descrambler SRG state and brings it

in sync with the scrambler SRG state in at most 31 iterations.

5.3 Self Synchronous Scrambling
Self Synchronous Scrambling is quite different from FSS and

DSS. In SSS, the signal, instead of being added to the PRBS

generated by the SRG, passes directly through the SRG. The

scrambled system gets descrambled as it passes through an

input/output reversed replica of the scrambler. In this operation,

the transmission signal itself controls the state of the shift registers

in the scrambler and the scrambled signal controls the state of the

shift registers in the descrambler. The scrambler and descrambler

are automatically synchronized once the number of received bits

reaches the shift register length. The term self-synchronous refers

to this synchronization operation.

An example of a transmission system using SSS is the SDH-based

ATM. The ATM cell stream }{ kb gets scrambled as it passes

through the 43 shift registers in the scrambling part and the

scrambled signal }ˆ{ kb 9s descrambled as it passes through the

input/output reversed shift register block in the descrambler. The

states of the shift registers in the descrambler become

automatically synchronized to those in the scrambler after the

reception of the first 43 scrambled bits.

The advantage of SSS is that it achieves good scrambling

performance for both short and long frames. This comes at a

price: a single bit error occurring in scrambled data due to a

transmission bit error typically causes a multi-bit error, or error

multiplication in the descrambled bit stream.

5.4 Scrambling Sequences
As mentioned earlier, the function of scrambling is to randomize

the bit stream before transmission. Therefore, the scrambling

sequence }{ ks should be such that the scrambled

signal }{ kk sb  is sufficiently random. If the scrambling

sequence }{ ks itself is random, then the scrambled signal

}{ kk sb  is also random. However, in practice, the scrambling

sequence is generated by a SRG, so it is not random. Therefore, it

is desirable to investigate the properties associated with

randomness and to use such propertied in the design of the

scrambling sequence }{ ks .

5.4.1 Randomness Properties
The following properties of binary random sequences are

particularly useful in the design of scrambling sequences: nearly

equal number of 0s and 1s, long runs appear less frequently than

short runs and the autocorrelation function is close to the delta

function. More precisely, one half of the runs are length 1, one

quarter of the runs are length 2, one eighth of the runs are length

3, etc., decaying exponentially, until we reach the longest run,

which has frequency 1. Sequences possessing these properties are

called Pseudo Random Bit Sequences (PRBS).

5.4.2 Shift Register Generators
Shift Register Generators (SRG) are widely used to generate

PRBSs . SRGs consist of shift registers and exclusive-OR gates.

Two types are commonly used in FSS: Simple SRG (SSRG) and

Modular SRG (MSRG). They differ in how the feedback is

implemented. Loosely speaking, they have arrows pointing in the

opposite direction. In the SSRG, the arrows go out from the shift

register stack into the OR gates, while in the MSRG, they are

reversed. More precisely, in SSRG, the state }{ ,1 kLd  of the last

shift register is controlled by the other shift registers. In contrast,

in the MSRG, the state of the last shift register

}{ ,1 kLd  controls the state of other shift registers. In fact the

SSRG and MSRG are the simplest types among many other

possible SRGs.

The scrambling sequences and the relevant SRGs are the most

important parts to understand to properly analyze and synthesize

scramblers, including the FSS, the DSS and even the SSS. The

unified description of the three categories of scramblers (FSS,

DSS and SSS) is provided by the concept of the Sequence Space,

which we discuss next.

5.5 Sequence Spaces
The concept of Sequence Space enables a rigorous definition and

description of sequences and SRGs. Loosely speaking, a Sequence

Space is a vector space of sequences satisfying the relation

specified by a characteristic polynomial. More precisely, for a

binary coefficient polynomial
i

i

L

i
xcxP  


0

)(, we define

the Sequence Space as the set of all sequences:

},1,0,0:},1,0,{{)]([
0

   kscksxPV iki

L

ik

satisfying the polynomial relation. The addition and scalar

multiplication of sequences is defined in the obvious way,

componentwise, The polynomial)(xP characterizing the

sequence space is called the characteristic polynomial of the

sequence space)]([xPV .

Since the defining relation of the sequence space can be viewed as

a recurrence relation ,1,0,
1

  kscs iki

L

ik
 or

,1,0,
1

0
 



  kscs iki

L

iLk
, it is clear that each sequence

is determined by the first L elements, which we call the initial

vector of the sequence. Therefore, the sequence space)]([xPV

is L dimensional and has
L2 elements. In other words, the

dimension of the sequence space equals the degree of the

characteristic polynomial.

5.5.1 Elementary Basis

Sequences
iE , whose initial vector is)0,,0,1,0,,0(ie ,

the i-th elementary basis vector of the initial space are called

elementary sequences. and similarly for

Leee ,,),0,,1,0(32  . The set of the L elementary

sequences
LEE ,,1  forms a basis for)]([xPV , called the

elementary basis.

5.6 The Trace and Norm in a Field
The trace and norm can be defined in any field, but are

particularly useful tools in finite fields. In the field of complx

numbers, the trace of z is simply twice the real part:

 zzzTr )(

And the norm is the modulus squared:

 zzzN )(

Note that both the trace and the norm are real numbers and that

the set of real numbers is a subfield of complex numbers. The

trace and the norm can therefore be viewed as compressing

information from the extension field to the subfield.

For finite fields, the trace and the norm compress information in a

similar way. A finite field
qF can be viewed as a subfield

of nq
F and both the trace and the norm as functions from

nq
F to

qF :

12

)(



n

q

nq qqq
F

F

Tr  

12

)(



n

q

nq qqq
F

F

N  

In other words, both for complex numbers and for finite fields, the

trace and is the sum of the conjugates and the norm is the product

of the conjugates.

6. DIFFERENCE EQUATIONS

A linear, constant-coefficient Nth order difference equation (DE)

for Single-Input-Single- Output (SISO) systems can be written as

)(...)1()()(...)1()(101 LnxbnxbnxbNnyanyany LN 

, (Eq. 6. 1)

where N accounts for the N possible delays of the output and L

accounts for the L possible delays of the input. The system is

called recursive when previous values of the output enter into the

calculation of the most recent output, y(n). The system is called

nonrecursive when there are no previous outputs used in the

calculation of y(n), leaving the updating to y(n) as a function of

the x(i) inputs only. The order of the DE depends on the number

N and not on the number L.

To analyze the stability of the system described by a DE, often the

terms on the right of Eq. 1 are set to zeros which leaves us with

the output y(n) and its N delays. We form what is called a

characteristic equation for a recursive system by substituting in a

trial solution
nzny )((or, take the z-transform) into the

homogenous equation DE

0)(...)1()(1  Nnyanyany N

(Eq.6.2)

to get

0...2

2

1

1   Nn

N

nnn zazazaz .

By factoring out
nz we get

0)...1(2

2

1

1   N

N

n zazazaz (Eq. 6.3)

where we analyse the portion in the parenthesis which is known as

the characteristic equation (CE). The N roots from this equation

are called the characteristic roots and it is from these roots system

stability can be characterized; noting if the ia are real numbers

the roots will appear in conjugate pairs. The system is said to be

stable (under certain conditions) is each kr has magnitude less

than one. Also, we may rewrite the solution to Eq. 2 in terms of

these roots (and for a given set of initial conditions) in the form:

n

NN

nn

IC rCrCrCny  ...)(2211 (Eq. 6.4)

Where the subscript IC indicates this is the initial condition

solution.

Example 1 Fibonacci.

Example 2 V.27 scrambler
761   xx as noted in the ITU

standards.

We start this example by noting that there seems to be no uniform

practice for writing these polynomials and hence their

interpretation can result in resulting implementations between

different bit construction tools.

So consider a system in which the output is arrived at by adding

its 6th and 7th delay. We can then write this equation as :

)7()6()( nynyny (Eq. 6.4)

or, in homogeneous form,

0)7()6()( nynyny . (Eq. 6.5)

This leads to the CE

01 76   zz

The exponents of this equation are in descending order so that we

can find the seven roots to this 7th degree equation using Matlab’s

companion matrix form to find roots through:

r=roots([1 0 0 0 0 0 -1 -1];

Then, in order to find the IC solution we formulate system of

equations as a function of the power of the roots and a set of

seven independent initial conditions to find the seven

corresponding coefficients Ci as indicated in Eq 4.The initial

conditions come knowing the first seven outputs of the scrambler

impulse response which we find either by hand or by using

Matlab’s filter command.

 The code is given by:

r=roots([1 0 0 0 0 0 -1 -1]);

rt=r.';

rt2=rt.^2;

rt3=rt.^3;rt4=rt.^4;rt5=rt.^5;rt6=rt.^6;

M=[1 1 1 1 1 1

1;rt;rt2;rt3;rt4;rt5;rt6];

IM=inv(M);

yimpulse=filter(1,[1 0 0 0 0 0 -1 -

1],[zeros(1,7)],[1 0 0 0 0 0 0]);

C=IM*yimpulse';

Ct=C.';

% The IC equation is given by

yIC67(n)=Ct*r.^(n-1);

% Find the first 127 coefficients using

the below for loop.

for n=1:127

 yIC67(n)=Ct*r.^(n-1);

end

The roots and the corresponding coefficents to be inserted into

equation 4 are as follows

r1 – r7 : 1.11, 0.62 + 0.90i, 0.6271 - 0.90i, -0.36 + 0.95i,

-0.36 - 0.95i, -0.81 + 0.26i, -0.81 - 0.26i

c1 – c7 : 0.15 - 0.00i, 0.15 - 0.01i, 0.15 + 0.01i, 0.15 -

0.02i, 0.15 + 0.02i, 0.11 - 0.0372i, 0.11 + 0.0372i.

Note that the magnitude of the roots are as follows:

Abs(r1-r7) : 1.11, 1.09, 1.09, 1.02, 1.02, 0.85, and 0.85.

Notice that some of the magnitudes are greater than 1. This

indicates that the system is unstable. This means that as n

increases, the sequence y(n) also increases. Now in our system of

interest, that being scramblers, our resulting sequence should be

recalculated using modulo 2 arithmetic, since we are in the bit

domain. We were looking for a way to expose and exploit the

underlying instability through these equations but have been

unsuccessful. We have plotted the output sequence with and

without the modulo 2 operation.

It is with the first plot where we would like to incorporate a

measure of entropy in the context of Tsallis entropy. Tsallis

entropy is a more general form of Shannon entropy. We know by

looking at the magnitudes of the roots that the sequence will grow

without bound. The rate of increase is in proportion to the

magnitude of the root. Each scrambler has with a unique curve

similar to the first plot.

 The second plot shows how, under this implementation scheme

which we have carefully annotated and defined, the sequence of

bits resulting from an impulse response (a 1 follwed by 126 zeros)

appears. This series of 127 bits is a deterministic sequence which,

if we incorporated more zeros into the impulse ,would repeat itself

every 127127  bits where 7 is the degree of the

polynomial or number of delays in the Eq. 2. The understanding

why there are 127 bits before the sequence repeats itself comes

from the notion of a maximal length sequence associated with

certain properties of Galois fields. The same properties og Galois

fields are used to design EDAC’s.

From the research on EDAC’s we see that the coding process can

be done in two domains: the systematic and non-systematic

domains. In the former domain we take a message word and

convolve it with a polynomial, which in form is exactly like that

of a scrambler, to create a code word. In the latter form the

message word is shifted to the left which then goes through a

division process that ‘systematically’ rewrites the message word

along with its remainder found in the division process. The

convolution process is identified with the FIR filter while the

division process is identified with the IIR filter. Although, in the

theoretical sense, any FIR filter can be written as an IIR filter and

visa versa, this is not exactly true when implementing the filters in

a computer. A computer does well with the finiteness of a FIR

filter but does not handle the element of infinity associated with

IIR filters very well at all. But the comparison’s are interesting. It

0 20 40 60 80 100 120

0

5

10
x 10

4 Plot of the sequence output for yIC67
Output of sequence

0 20 40 60 80 100 120
-0.5

0

0.5

1

1.5
Plot of the sequence output for yIC67 modulo 2

BIT level 0 or 1

sequence number n

turns out that associated with every scrambler/EDAC system, used

in the context of modulo 2 arithmetic used to filter bits, carrying

out the process can be done in either of the domains described

above. As an observation we see that we can identify the short

term application of the systematic EDAC division process with

the long term IIR scrambling process and also identify the slightly

longer term convolutional nonsystematic EDAC process with a

shambling process. A subtle point to come out of the above plot is

that although the DE if left free from the operation of modulo

arithmetic grows without bound the sequence that results from

applying modulo arithmetic results in a period sequence. This

periodic sequence can in fact be used to scramble a bit stream as

effectively as the

implemented system equation written in Eq. 4. The difference is

that in Eq. 4 the output sequence is arrived at by using two taps

(the 6th and 7th delay points) in the context of an IIR filter while in

the context of a FIR or convolutional filter the output would be

arrived at by substituting the 127 point sequence found from an

impulse response to the scrambler, into the bi’s found on the right

side of Eq.4 and setting the ai coefficients to zero. The reason that

the IIR filter is used over the FIR should be obvious; required are

a lesser number of taps to implement in hardware.

Learning that we can in fact rewrite the IIR filter in terms of an

FIR filter allows us to use a blind deconvolution algorithm to

attempt to determine (blindly) the coefficients of the scrambler or

likewise uncover the message word from a nonsystematic EDAC

coding.scheme. Referring to a previous report we formulate a

construction of a matrix system designed for a convolution or FIR

process. The idea is that under certain assumptions, when made

available are the outputs of two sequences of either codewords or

scrambled bits that share a common underlying sequence, namely

the scrambler or EDAC polynomial, the input sequences can be

found and hence the scrambler or EDAC polynomial coefficients

can be determined. Two problems have been identified with this

approach. The first is that this approach works when the modulo 2

operation is not used. The second problem is that with scramblers

the process used in the matrix method assumes an FIR filter but

scramblers are clearly IIR. The 127 point sequence does not

exactly replace the IIR sequence because to do so the sequence

would have to be repeated infinitely many times. Hence,

truncation is a problem. We will show what we have so far.

6.1 Entropy of Scrambled TypeA Data
We investigate the entropy as a function of the window size for

data scrambled with a number of different scramblers. The results

are shown in Table 6.1. Note that for framed data, the entropy

decays with the size of the window, because as the window grows

larger, the regularity and predictability of the scrambler begins to

manifest itself.

The outline of the code is:

M=[2,41; 2,4; 33,35;

 39,41; 31,35;

 31,39; 7,37; 6,8;

 2,3; 37,44; 29,35;

 35,39; 4,39; 6,45;

 6,41; 2,35; 6,42;43,45;

 4,43; 2,31; 1,7];

for k = 1:iterations

 [x,states] = filter(1,D,

 S((k1)*window+1:k*window),

 states);

 R = [R, mod(x,2)];

 states = mod(states,2);

end

R=R.^1.4;

for k3=1:length(cc)

 k2=cc(k3);

 pp=fix(length(R)/k2);

 v=reshape(R(1:pp*k2),k2,pp)';

 szv=size(v,1);

 b=2.^(0:k2-1);

 w=v*b';

 h=hist(w,nbins);

 h=h/sum(h);

 sh(k3,kk)=abs(

 sum(h.*log2(h+eps)));

end

The blue dots denote the impulse responses (lrs) of the

scramblers, the red dots represent scrambled synthetic framed data

and the green dots represent scrambled TypeA data.

Table 6.1. Entropy of Scrambled Data

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

6.2 Blind Descrambling
We have succeeded in extending the application range of the

multipath mitigation algorithm to the area of blind descrambling,

albeit only for the restricted case of short message lengths. This

result is particularly interesting in view of the fact that in this

setting, the multipath equations are not satisfied exactly, only

approximately, due to truncation of polynomials. Therefore,

strictly speaking, there is no precise mathematical justification for

the algorithm to work. However, through numerical experiments,

we have shown that there are cases, in particular, when the

message length is short, where the algorithm succeeds.

We present such an example, the algorithm and the successful

application of the algorithm and the corresponding solution in the

following code snippet:

w=mod(filter(1,[1 0 0 -1 -1],

 zeros(1,200),

 [1 0 0 0]),2)

w=w(1:15);

r=repmat(w,1,200);

m1=[1 1 0 1 1];

m2=[1 1 0 0 1];

y1=(conv(r,m1));

y2=(conv(r,m2));

for k=2:504

 c1=convmtx(y1(1:k)',5);

 c2=convmtx(y2(1:k)',5);

 C=[c2 c1];

 CC=(C'*C);

 [aa ss]=eig(CC);

 aaak(:,k)=aa(:,1);

 sssk(k)=ss(1,1);

 ssskk(k)=ss(2,2);

 ssskkk(k)=ss(end,end);

end

figure(1)

subplot(3,1,1),plot(sssk)

subplot(3,1,2),plot(ssskk)

subplot(3,1,3),plot(ssskk-sssk)

figure(2)

imagesc(aaak)

Table 6.2 shows that the algorithm succeeds in finding the correct

solution as long as the size of the multipath matrix is chosen to be

large enough. Note that each column in Fig 6.2 represents the

solution and that solutions must first be normalized, because from

the linear algebra point of view, any multiple of a solution is also

a solution, while for practical purposes, the numbers are binary. In

particular, note that the negative of a solution is also a solution,

which explains the alternating red – blue pattern. Green appears in

a band, because it represents zero.

Table 6.2. Blind descrambling

50 100 150 200 250 300 350 400 450 500

1

2

3

4

5

6

7

8

9

10

To provide some insight into the working of the multipath

algorithm in this setting, we plot the smallest two eigenvalues and

their difference as a function of the multipath matrix size in Table

6.3. Ideally, if the multipath equations were holding exactly, the

smallest eigenvalue would be 0 and the corresponding eigenvector

would be the solution. Note that the smallest eigenvalue is not

zero, except for trivially small sizes of the multipath matrix.

However, after the initial growth region, its value reaches a

plateau. This is to be contrasted with the behaviour of the second

smallest eigenvalue, which continues growing. In a sense, the

smallest eigenvalue is “approximately zero”, at least compared to

the other eigenvalues. We therefore conjecture, that the

eigenvector corresponding to the smallest eigenvalue continues to

represent the solution, even though the theoretical justification is

lacking, Our experiments show that this is indeed the case when

the scrambled messages are very short. Unfortunately, it is not

true in general.

Table 6.3. Roots Space

0 100 200 300 400 500 600
-1

0

1

2

0 100 200 300 400 500 600
0

10

20

0 100 200 300 400 500 600
0

5

10

6.3 Fractal Structures in Root Space
During the investigation of the difference equations, their

solutions and the relationship with the roots of characteristic

polynomials, we have observed that the set of roots of

characteristic polynomials exhibit interesting structures and in

particular fractal behaviour. These results are presented in Fig. 6.4

and Fig. 6.5.

Table 6.4. Roots Space

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

Table 6.5. Fractal Structures

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

6.4 LRS Growth Rates
Fig. 6.6 summarizes our investigation of the growth rates of the

linear recursive sequences defined by all the different binary

polynomials of degree six. Each curve represents one such linear

recursive sequence (before the modulo 2 operation). The vertical

axis is logarithmic. Since all the curves have an asymptote, this

shows that in the asymptotic region, the growth is exponential and

it is determined by the largest root of the characteristic polynomial

of the difference equation.

The brief sketch of the code is:

for k=1:2^n*2

 ss=s(k,:);

 r=roots(ss);

 rt=r.';

 rt2=rt.^2;

 rt3=rt.^3;

 rt4=rt.^4;

 rt5=rt.^5;

 rt6=rt.^6;

 m2=[ones(1,n+1);

 rt;rt2;rt3;rt4;rt5;rt6];

 Iaa=inv(m2);

 yss=filter(1,ss,[zeros(1,100)],

 [1 zeros(1,n)]);

 c=Iaa*yss(1:n+1)';

 ct=c.';

 for nn=1:200

 xss(nn,k)=ct*r.^(nn-1);

 end

end

plot(log10(abs(xss)))

Table 6.6. LRS Growth Rates

0 20 40 60 80 100 120 140 160 180 200
-20

-10

0

10

20

30

40

50

60

7. CONCLUSION AND OUTLOOK
Finite fields provide the mathematical foundation for

understanding coding and scrambling. The first part of this

research outlines the mathematical techniques which we believe

will be help us in future research on blind decoding and

descrambling.

In the second part, we present the results. We have succeeded in

applying the multipath mitigation algorithm to blind descrambling

for the case of short messages and observed fractal self similar

structures in the root space of the scrambler, whose implications

are as of yet unknown. The problem of bit sequences in the

modulated domain is hard and deserves further study. We plan to

address it in the future.

8. REFERENCES
[1] Todd K. Moon, Error Correction Coding. Wiley, 2005.

[2] Rudolf Lidl, Gunter Pilz, Applied Abstract Algebra.

Springer, 1998.

[3] G. Birkhoff, T.C. Bartee, Modern Applied Algebra,

McGraw-Hill, 1970.

[4] Salvatore Gravano, Introduction to Error Correction Codes,

Oxford University Press, 2001.

[5] Berlekamp E. W., Key Papers in the Development of Coding

Theory. IEEE Press, 1974.

[6] R.J. McEliece, Finite Fields for Computer Scientists and

Engineers, Kluwer Academic Publishers, 1980.

[7] Philip Koopman, Tridib Chakravarty, Cyclic Redundancy

Code (CRC) Polynomial Selection For Embedded Networks,

The International Conference on Dependable Systems and

Networks, DSN-2004.

[8] Parameter Sequencing using Shift Register Generators,

National Technical ELINT Center, Informal Technical Note,

1-04, April 2004.

[9] Hamming(7,4) Code, Wikipedia,

http://en.wikipedia.org/wiki/Hamming_7%2C4

[10] R. Gautier, G. Burel, J. Lettessier, O. Berder, Blind

Estimation of Scrambler Offset Using Encoder Redundancy,

36 Asilomar Conference on Signals, Systems and Computers,

Pacific Grove, California, USA, Nove 3-6 2002.

[11] Jacob H. Gunther, Lee Swindlehurst, On the Use of Kernel

Structure for Blind Equalization, IEEE Transactions on

Signal Processing, Vol 48, No 3, March 2000.

http://en.wikipedia.org/wiki/Hamming_7%2C4

