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ABSTRACT 

This report presents applications of finite fields to descrambling 

and to characterizing special sequences.  

 

1. INTRODUCTION 
 

This report  was a continuation of a research effort which had as 

an objective to find an application for Tsallis entropy with 

modulated bitstreams. 

We began by defining a bitstream. A bitstream for our purposes is 

defined as a structured series of 1’s and 0’s sent through a 

randomizer. The structured bitstream (before being sent to the 

randomizer) is defined as a set of frames of a certain length where 

in each frame the bits are portioned into a header, a message, and 

an EDAC. We can think of the header as synchronization tool to 

indicate that a message is to follow. The EDAC (Error Detection 

and Correction) is a check on the message.  

 

If one were take a Fourier Transform of this bitstream, spectral 

harmonics, led in part by the synchronization bits in the header, 

are easily recognized. And, if this bitsatream was digitally 

modulated, again, spectral harmonics, led in part by the 

modulated synchronization bits in the header, are easily 

recognized. 

 

Modulated bitstreams that yield spectral harmonics are not 

desired; there is a benefit in power efficiency and bandwidth if 

these harmonics can be distributed across the bandwidth of the 

signal. To do that the framed sequence of bits are sent through a 

randomizer. In particular we have focused our attention on a class 

of randomizers known as ‘feed through randomizer’. In electrical 

engineering they are known as IIR (Infinite Impulse Response) 

filters. This is in contrast to FIR (Finite Impulse Response) filters 

which are used to ‘derandomize’. 

Randomizers for our application are inherently unstable; this will 

be shown below. However, randomizers tend to smooth out a 

spectrum which is good from an engineering design perspective. 

Randomizers take away spectral harmonics that are present due to 

the synchronization bits in the header. From an entropy point of 

view, a (naïve) entropy measure assigned to the structured bits 

(using a histogram of bits) will be low compared the measure 

assigned to the randomized bits. There are, of course, theoretical 

limits on this (naïve) entropic measure which have to do with the 

most general, albeit, unpractical, class of bitstreams, the uniformly 

distributed system of bits. We mention the word unpractical since 

systems of pseudo random uniformly distributed bits are better 

identified with ‘encrypted’ bitstreams, and we are not interested in 

these systems.  

 

Another word for randomizer is scrambler, and we will stick to 

using this latter expression. Our need to understand scramblers is 

based on our need to develop an entropy measure on modulated 

bitstreams, which commonly use scramblers to increase spectral 

efficiency, in some sense. Scramblers do a good job in removing 

elements of an obvious structure in the bit domain and pass it on 

to the modulated domain. Hence our goal was to first understand 

the characteristics of these scramblers and how they change the 

structured characteristics of the framed bits and then ultimately 

identify those characteristics in the modulated domain. Going into 

this research we knew that the naïve method of entropy measure, 

that being taking subsets of contiguous bits as received and 

applying a Shannon type entropy formulation based on the 

histogram of these contiguous bits, would not be sufficient. In 

fact, grad student E.J. Yoerger from the University of New 

Orleans, provided Special Signals with a Matlab based GUI that 

demonstrated the scramblers ability to hide all traces of the 

underlying structure of the framed bitstream after it goes through 

any scrambler. It should be noted that our naïve measure of 

entropy is very close to the measure associated with Sigmage. 

 

Co-currently, we looked at applying a blind deconvolution 

method to the scrambled bitstreams to see if, in a deterministic 

way, we could identify the scrambler itself. This line of research 

was built on the research also provided to Special Signals by Dr. 

George Smith of NRL (Naval Research Lab). Dr. Smith took the 

blind deconvolution method and used it to do blind descrambling 

(in the bit domain) and blind demodulation (in the modulated 

domain). With blind descrambling he found that the approach is 

difficult due to linear algebra constraints which we will talk about 

later in this paper. However, his research helped guide the effort 

in this paper to produce two working algorithms; the first 

algorithm is based on a blind EDAC polynomial assessment while 
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the second algorithm shows the existence of a solution to a system 

of equations with truncated variable inputs.  

 

In forming a solid base for this extension we leveraged ourselves 

with the basics of Galois theory and how it pertains bit encoding 

for EDAC’s and we research the basics of DE’s (difference 

equations) and how it pertains to the feedback process found in 

scramblers. We found a connection between roots of (Galois 

Field) polynomials where we took some liberty in jumping 

between Galois fields and the complex number system, and roots 

of the z-transform of the DE’s.  

The remainder of this report will be broken up into the following 

sections. The first section will be the reprint of the summer report 

with some changes where is will be noted that it is tied to the 

extended research. The second section will discuss the basics of 

DE’s and how scramblers can be thought of in this domain. We 

will include two examples: one is taken from the Fibonacci 

sequence and the other from a scrambler associated with a V.27 

modem. The third section will turn to the matrix methods we have 

developed along the lines of blind identification of EDAC 

polynomials and scramblers. In the final section we will combine 

the DE method with the matrix method and examine how we shall 

proceed with developing a meaningful measure of entropy to 

apply to these systems in both the bit and modulated domains. 

2. THE STRUCTURE OF FINITE FIELDS 
 

Finite fields are fields with a finite number of elements. They 

were first studied by Evariste Galois and are also called Galois 

fields. They have been known initially for their mathematical 

beauty and applications within mathematics. More recently they 

have found important applications in communications 

engineering, where they provide the mathematical foundation of 

coding and scrambling [2]. In coding, they are used as a design 

tool for Bose-Chaudhuri-Hocquenghem and Reed-Solomon 

codes. In scrambling, they provide the means to understand the 

properties of maximal length linear feedback shift register 

sequences . 

 

Informally, a field is a set in which we can do the same operations 

as with fractions, real numbers, or complex numbers. More 

precisely, a field is a set of elements F , including 0 and 1, 

together with two binary operations: addition + and 

multiplication , which are associative and commutative and 

where multiplication distributes over the addition in the usual 

way. Every field element u , has a unique negative u , such 

that

0)(  uu

. Every 

nonzero 

field 

element 

u  has a 

unique reciprocal
1u , such that 11  uu . Therefore, 

formally, a field is the triple ),,( F . 

Another way to define a field is as a commutative ring where 

every nonzero element has a multiplicative inverse. Note that the 

set of field elements with the operation of addition forms an 

Abelian (commutative) group and that the set of nonzero field 

elements with the operation of multiplication also forms an 

Abelian group. 

The order of a field is the number of elements in the field. If the 

order is infinite, we call the field an infinite field. For example, 

rational numbers Q , real numbers R  and complex numbers 

C are all infinite fields. 

2.1 Examples 

Fields with finite order are called finite fields. For example, 2Z  

is a finite field consisting of only two elements 0 and 1, where 

addition and multiplication are defined modulo 2. To stress that it 

is a field, we denote it 2F , i.e., the Galois field with 2 elements. 

This is the smallest field.  

2.1.1 The Field pF  

Similarly, if p is a prime, the Galois field pF  is the finite field 

of order p , where addition and multiplication are defined 

modulo p . On the other hand, 4Z  with modulo 4 addition and 

multiplication is not a field, because the element 2 does not have 

an inverse. 

2.1.2 The Field 22
F  

There exists a field with 4 elements. We construct it in an 

abstract way, referring to the field axioms. Being a field, 22
F has 

to contain 0 ,1  and two more elements. Let us denote the third 

element . Then the field axioms, in particular the closure of 

addition and the closure of multiplication, imply that 

1 and
2 are also elements of the field. This gives five 

elements, so at least two of them must be equal to each other. It is 

easy to check that the only consistent choice is
21   and 

that the addition and multiplication operations are defined by the 

Table 2.1 and Table 2.2, respectively. 

Note that the notation is better expressed if we view the fourth 

element as 1 , while the multiplication is more natural with 

2 . Of course, 1 and
2 are the same element. The 

correspondence between the additive representation and the 

multiplicative representation is expressed in the logarithmic Table 

2.3. 

Table 2.1. Addition in 22
F  

 

 

 

 

           0                  1    1  

   0  0  1    1  

    1   1  0  1    

       1  0  1  

1  1      1  0  



 

 

 

 

Table 2.2. Multiplication in 22
F  

 

 

 

 

 

 

 

 

Table 2.3. Logarithms in 22
F  

 

 

 

 

 

 

Note that logarithmic Table 2.3 is sufficient for understanding the 

field and that the addition and multiplication tables can easily be 

reconstructed from it. In particular, the addition is simply vector 

addition and the multiplication of nonzero elements is cyclic. 

It is also worth observing, that the equality
21   implies 

that and
2 are roots of the polynomial 12  xx . The 

field 22
F can be viewed as the polynomial remainders modulo the 

polynomial 12  xx . 

 

2.1.3 The Field mp
F  of Polynomial Remainders 

If )(xf  is an irreducible polynomial (cannot be factored) of 

degree m with coefficients in pF , then the set of remainders 

(residue classes) modulo )(xf  is a finite field of order
mp , 

denoted mp
F . This is the most important example, because it 

turns out that all the finite fields are isomorphic to mp
F . We will 

discuss this example in detail later. 

2.2 Brief Summary 
Here we present a brief summary of results on finite fields, which 

are important for coding and scrambling. The rest of the section 

will explain the concepts in more detail. 

2.2.1 Existence and Uniqueness 

For each prime p and positive integer 1m , there exists a finite 

field mp
F with

mp elements and there exists no finite field 

with q elements, if q is not a prime power. Any two fields 

with
mp elements are isomorphic.  

2.2.2 Construction 

The integers modulo p form a prime field pF under modulo 

p addition and multiplication. The polynomials  ][xFp  over 

pF  modulo an irreducible polynomial ][)( xFxg p of degree 

m form a finite field with
mp elements under mod-g(x) addition 

and multiplication. For every prime p , there exists at least one 

irreducible polynomial ][)( xFxg p of each positive 

degree 1m , so all finite fields may be constructed in this way. 

2.2.3 Structure 

Under addition, mp
F is isomorphic to the vector space

m

pF )( . 

Under multiplication, the nonzero elements of mp
F form a cyclic 

group 

                              },,,,1{ 22 mp  , 

generated by a primitive element mp
F . 

The elements of mp
F are the

mp roots of the polynomial: 

                                  m

m

p

p Fxx   

The polynomial xx
mp  is the product of all monic irreducible 

polynomials ][)( xFxg p such that ))(deg( xg divides m . 

The roots of a monic irreducible polynomial ][)( xFxg p form 

a cyclotomic coset of ))(deg( xg elements of mp
F which is 

closed under the operation of raising to the p -th power. 

For n that divides m , mp
F contains a subfield with

np elements. 

 

           0                  1    2  

   0  0  0  0  0  

    1   0     1    2  

     0    2  1  

2  0    
2  1    

   0  0  

    1   1  

       

1  2  



2.3 The Additive Structure 

The field mp
F  can be viewed as a m dimensional vector space 

over pF . Therefore, the addition is simply the vector, i.e., 

component-wise, addition.  

More formally, ),( F  is a finite Abelian group. The 

Fundamental theorem on Abelian groups, applied to the finite 

case, states that any finite Abelian group is isomorphic to the 

direct sum (product) of building blocks )(qZ , with 

mpq  and p a prime: 

                    )()()( tZrZqZ     

For example, this theorem helps us find all Abelian groups of 

order 8: the cyclic group )8(Z , )4()2( ZZ   

and )2()2()2( ZZZ  . It also implies that there is only one 

Abelian group of order 6 and that the cyclic group )6(Z must be 

isomorphic to )3()2( ZZ  . We will see that this theorem has 

deep consequences for the structure of finite fields. 

2.4 The Multiplicative Structure 

The field mp
F is determined by the fact that ),( * F is a cyclic 

group – a fact which is not obvious, so we briefly explain it. First, 

we need some tools from cyclic groups. 

2.4.1 Cyclic Groups and Subgroups 
A cyclic group is a group with a single generator. Any cyclic 

group of order n is isomorphic to nZ . If g is an element of a 

group G, then the cyclic group )(gC , generated by g, is always 

a subgroup G and by Lagrange’s theorem its order divides the 

order of G. In the case where nZG  , the order of )(mC  is the 

least positive integer k, such that nkm mod0 , i.e., such that 

the integer product km is divisible by n . Thus km is the least 

common multiple of m and n , denoted by ),( nmlcm and the 

order of )(mC is: 

         
),gcd(

),(
|)(|

nm

n

m

nmlcm
kmC   

For example, suppose 10n and 4m . 

Then }0,6,2,8,4{)4( C and 5|)4(| C consistent with 

5
4

20

4

)10,4(
|)4(| 

lcm
C and 

5
2

10

)10,4gcd(

10
|)4(| C . 

We see that nZmC )( if and only if m and n are relatively 

prime. 

2.4.2 The Euler Number 

The number of integers in the set }1,,2,1,0{ n that have 

order n  (are relatively prime to n ) is called the Euler number 

and is denoted by )(n . For example, in 10Z , the integers which 

are relatively prime to 10, are }9,7,3,1{ , so 4)10(  . Apart 

from the four elements of order 10, 10Z also has elements of 

order 1, 2 and 5, because those are the integers that divide10. 

There is one element of order 1, namely 0, and 

1}0{)0( ZC  . There  is one element of order 2, namely 5, 

and  2}5,0{)5( ZC  . There are 4 elements of order 

5, namely 2, 4, 6 and 8 and 

5}8,6,4,2,0{)8()6()4()2( ZCCCC   . 

In general, nZ has a cyclic subgroup of order d for each positive 

integer d that divides n , including 1and n . dC consists of 

}
)1(

,,
2

,,0{
d

nd

d

n

d

n 
 and is isomorphic to dZ . dC thus 

contains )(d elements that are relatively prime to d , each of 

which has order d and generates dC . The remaining elements of 

dC belong also to smaller cyclic subgroups. 

For example, 10Z has a subgroup }8,6,4,2,0{5 C with 5 

elements. Four of these elements, namely }8,6,4,2{ , are 

relatively prime to 5 and generate 5C . The remaining element 

of dC , namely 0, has order 1. 

Since every element of nZ has a definite order d that divides n , 

we can express n as a sum over all possible orders d of the 

number of elements of that order, which is )(d . This gives: 

                               
ndd

dn
|:

)(  

All Euler numbers may be determined recursively from this 

expression. For example, 1)1(  , 1)1(2)2(   , 

2)1(3)3(   , 2)2()1(4)4(   , . 

2.4.3 The Prime Subfield of a Finite Field 

Let qF be a finite field with q elements. We want to show that 

q has to be a power of a prime p , i.e., 
mpq  and we will use 

the Primary Subfield as the main tool. 



Consider the cyclic subgroup )1(C of qF generated by the unit 

element1 . By the cyclic group theorem, )1(C is isomorphic 

to nZ and its elements may be denoted by }1,,2,1,0{ n , 

with mod-n addition. 

By the distributive law in qF , the product ji * (in qF ) of two 

nonzero elements in )1(C is simply the sum of ij ones, which as 

an element of nZC )1( is nij(mod) . Since this is the 

product of nonzero elements of qF , by the field 

axioms nij(mod) must be nonzero. This will be true if and only 

if n is a prime number p . Thus )1(C is a subfield of qF with a 

prime number p of elements and hence isomorphic to pF . Thus 

the elements of )1(C , which are called the integers of qF , may 

be denoted by }1,,2,1,0{  pFp  . The addition and 

multiplication of qF reduce to modulo p addition and 

multiplication in pF . The prime p is called the characteristic 

of qF . Since the p -fold sum of the identity1with itself is 0 , the 

p -fold sum of any element qF with itself is also 0 , which 

means 0p . In summary, the integers of a field qF , form the 

prime subfield qp FF  with p elements, where p is the 

characteristic of qF . 

2.4.4 The Ring of Polynomials over a Field 

The set ][xF of polynomials over a field F has all the properties 

of a field, except that a nonzero polynomial may not have an 

inverse. Such a structure is called an integral domain, that is, a 

commutative ring with identity and no divisors of zero and it is 

a generalization of the ring of integers Z . The set of polynomials 

][xF has several other important properties: it is a Euclidean 

domain, a principal ideal domain and a unique factorization 

domain.  

2.4.4.1 ][xF Is a Euclidean Domain 

Euclidean domain simply means that polynomials have the Euclid 

property, which describes what happens in polynomial division: 

for any pair of polynomials ][)(),( xFxgxf  , there exist a 

unique quotient polynomial ][)( xFxq   and a unique 

remainder polynomial ][)( xFxr  with a smaller degree than 

the degree of the divisor polynomial )(xg , that is 

))(deg())(deg( xgxr  , and: 

                         )()()()( xrxgxqxf  . 

2.4.4.2 ][xF Is a Principal Ideal Domain (PID) 

In a ring R , an ideal I is a sub-ring with the “absorbing” 

property IRI  . It is easy to see that this is the right property 

that allows forming the quotient ring IR / . 

A principal ideal is an ideal with a single generator g and can 

be denoted by  g . In other words,  gRg . An 

integral domain in which every ideal is principal is called a 

principal ideal domain (PID). For example, the integers Z are a 

PID. In fact, every Euclidean domain is a PID, because 

 ),gcd(, gfgf , as can be easily verified using the 

Euclid algorithm. Therefore, ][xF is a PID. 

We are interested in constructing fields and the construction will 

involve division by an ideal, so the natural question is “Under 

what conditions is quotient a field?” The answer: if and only if the 

ideal is maximal (the only ideal containing it is the ring itself). 

In ][xF , maximal principal ideals are generated by irreducible 

polynomials (polynomials which cannot be factored in ][xF ). 

This yields a tool for constructing finite fields: divide ][xF by an 

ideal generated by an irreducible polynomial. 

2.4.4.3 ][xF Is a Unique Factorization Domain 

By definition, every monic (leading coefficient1) polynomial is 

either irreducible, or it can be factored into a product of monic 

polynomial factors, each of lower degree. In turn, if a factor is not 

irreducible, it can be factored further. Following this process, we 

eventually arrive at a product of monic irreducible polynomials. 

This factorization is unique (up to the order of the factors), so 

][xF is a Unique Factorization Domain. 

Note that the unique factorization property may not hold, if the 

coefficients are not from a field. For example, 

consider ][8 xZ and the polynomial 12 x . It can be factored in 

more than one way: 

                )3)(3()1)(1(12  xxxxx  

 

2.4.5 Irreducible Polynomials 
A polynomial is irreducible (prime), if it cannot be nontrivially 

factored. Irreducible polynomials are important because they 

generate finite fields. All finite fields can be viewed as 

polynomials where addition and multiplication are defined 

modulo an irreducible polynomial. In a sense, the search for 

finite fields becomes the search for irreducible polynomials. This 

is analogous to searching for prime numbers and the Sieve of 

Aristothenes can be used in both cases. 

For integers, the method goes as follows. Start with a list of 

integers greater than1 . The first integer on the list is 2 , which is 

prime. Erase all multiples of 2 (even integers). The next 

remaining integer is 3 , which must be the next prime. Erase all 



multiples of 3 . The next remaining integer is 5 , which must be 

the next prime. Erase all multiples of 5 . And so forth. 

Similarly, to find all prime (irreducible) polynomials in ][2 xF , 

for example, first list all polynomials of degree1or more 

in ][2 xF , in order of degree. (Note that all nonzero polynomials 

in ][2 xF are monic.) No degree1polynomial can have a factor, 

so the two degree1polynomials, x and 1x , are both prime. 

Next, erase all degree 2 multiples of x and 1x , namely 

2x , xx 2
and 12 x from the list of degree 2 polynomials. 

This leaves one prime (irreducible) degree 2 polynomial, 

namely 12  xx . Next, erase all degree 3 multiples of 

x , 1x and 12  xx from the list of eight 

degree 3 polynomials, namely the six polynomials: 

3x ,
23 xx  , xx 3

, xxx  23
, 13 x and

123  xxx . The first four obviously contain x as a 

factor. The last two (and also the second and third) 

contain 1x as a factor. That is easily seen by observing that any 

polynomial in ][2 xF with an even number of coefficients has 

1as a root and therefore contains 1x as a factor. After erasing 

the six reducible polynomials from the eight 

degree 3 polynomials, the remaining two 

polynomials 13  xx and 123  xx must be prime. This 

process yields three prime polynomials of degree four: 

14  xx , 134  xx and 1234  xxxx . 

Continuing in this, we may list all prime polynomials in ][2 xF , 

up to any desired degree. It turns out that there is at least one 

irreducible polynomial of every degree. This means that there 

exists a finite field mF
2

for every m . 

2.4.6 Primitive Polynomials 

A primitive element of a finite field qF is an element whose 

multiplicative order is 1q . This means that all the nonzero 

elements of the field qF can be written as: 

                           },,,,,1{ 232 q  . 

An irreducible polynomial, which has a root which is a 

primitive element, is called a primitive polynomial. While every 

irreducible polynomial can be used to generate a finite field, 

primitive polynomials are especially convenient, because they 

provide an explicit representation of the field elements as powers 

of the primitive root . 

2.4.7 The Field 32
F  

Primitive polynomials offer the most convenient tool for 

constructing finite fields. The field is the set of remainders 

modulo the generator primitive polynomial, the addition is the 

vector addition and the multiplication is cyclic. The logarithmic 

table gives the correspondence between the additive and the 

multiplicative representations. For the field 32
F , we construct the 

field with the primitive polynomial 13  xx  and the result is 

presented in Table 2.4. 

 

Table 2.4. Logarithms in 32
F  

 

 

 

 

 

 

 

 

 

 

 

 

The table indeed contains all the elements in 32
F , 

because 17  . There is a second primitive polynomial of 

degree three, namely 123  xx , so it may appear that there is 

another field 32
F . However, the two fields obtained by the two 

polynomials are isomorphic. 

2.4.8 The Field 42
F  

Following the construction of 32
F in the previous section, we 

construct 42
F using the primitive polynomial 14  xx . The 

result is summarized in Table 2.5. If we used the second primitive 

polynomial of degree four, namely 134  xx instead, we 

would obtain the same field in a similar manner. However, if we 

used the polynomial 1234  xxxx , which is 

irreducible, but not primitive, then powers of a root would not 

be sufficient, because the element is not primitive. Instead, we 

would have to use both powers and linear combinations, or find 

another element  , which is primitive. 

 

Table 2.4. Logarithms in 42
F  

 

0  

1  

  

2  

13   

  24
 

125    

126   



0  

1  

  

2  

3  

14   

  25
 

236    

137    

128   

  39
 

1210    

  2311
 

12312    

12313    

1314   

 

The table lists all of the elements of 42
F , because 115  . 

 

2.4.9 Minimal Polynomials 
Similarly as irreducible and primitive polynomials can be used to 

construct finite fields, minimal polynomials are useful in 

constructing binary codes. A minimal polynomial of a field 

element is the binary polynomial of smallest degree, which 

has as a root. It can be computed in terms of conjugates, which 

we define next. 

2.4.9.1 Conjugates 
The roots of polynomials with binary coefficients occur in 

conjugates, similarly as complex roots of polynomials with real 

coefficients occur in conjugate pairs. For example, the polynomial 

12 z has complex roots i and i . Note that the same 

polynomial, usually written as 12 x , when considered with 

binary coefficients, has a double root 1x , so we need to 

consider an irreducible polynomial with binary coefficients and 

there is exactly one such polynomial: 12  xx . It has roots 

 and
2 in )2( 2GF . The analogy with complex roots end 

here, though, because while complex conjugate roots always 

appear in pairs, Galois extension field conjugates may appear in 

larger sets. If is a field element of )2( mGF , then the 

conjugates of  are: 

                  ,
2 ,

4 ,
8 ,…,

12 r

  

where r is the smallest integer such that  
r2

. For example, 

the conjugates of 
3 in )2( 3GF are 

623)(   and
51243)(   . The conjugate elements 

in Galois fields )2( 2GF , )2( 3GF and )2( 4GF are presented 

in Table 3.1, Table 3.2 and Table 3.3, respectively. 

 

Table 3.1. Conjugate elements in )2( 2GF  

Conjugates  Order 

1 1 

            ,
2                    3 

 

Table 3.2. Conjugate elements in )2( 3GF  

Conjugates  Order 

1 1 

          ,
2 ,

4                    7 

        
3 ,

5 ,
6  7 

 

Table 3.3. Conjugate elements in )2( 4GF  

Conjugates  Order 

1 1 

    ,
2 ,

4 ,
8                    15 

   
3 ,

6 ,
9 ,

12  5 

          
5 ,

10  3 

   
7 ,

11 ,
13 ,

14  15 

 

Note that conjugate elements have the same order and therefore if 

an element is primitive, all its conjugates are also primitive. 

Recall that the order of an element divides 12 m
and so if 

12 m
is prime, the field elements will have order 12 m

and be 

primitive. For example, all elements of )2( 3GF have order 7 

and are primitive. On the other hand, some elements of have order 

less than 15 and are non-primitive. 

One of the properties of conjugates is that they provide a 

mechanism for going from an extension field to its base field. 



Similarly as 1))(( 2  ziziz yields a real polynomial, 

)(1))()(( 342 xmxxxxx   is a 

binary polynomial. Note that the product contains a factor for 

each conjugate. The polynomial )(xm is the binary polynomial 

of smallest degree, which has  as a root and is called the 

minimal polynomial of . Note that all conjugates have the same 

minimal polynomial. 

 

2.4.9.2 Examples of Minimal Polynomials 
Minimal polynomials can be computed for each conjugate class 

by multiplying together factors corresponding to the conjugates. 

Results for )2( 2GF , )2( 3GF and )2( 4GF are presented in 

Table 3.4, Table 3.5 and Table 3.6, respectively.  

Table 3.4. Minimal Poynomials in )2( 2GF  

Conjugates  Minimal Polynomial 

0 x  

1 1x  

            ,
2           12  xx  

 

Table 3.5. Minimal Polynomials in )2( 3GF  

Conjugates  Order 

0 x  

1 1x  

          ,
2 ,

4          13  xx  

        
3 ,

5 ,
6         123  xx  

 

Table 3.6. Minimal Polynomials in )2( 4GF  

Conjugates  Order 

0 x  

1 1x  

    ,
2 ,

4 ,
8           14  xx   

   
3 ,

6 ,
9 ,

12           12  xx  

          
5 ,

10  1234  xxxx  

   
7 ,

11 ,
13 ,

14  134  xx  

 

 

3. CODING 
Suppose that we wish to transmit a sequence of binary digits 

across a noisy channel. If we send a 1, a 1 will probably be 

received. If we send a 0, a 0 will probably be received. 

Occasionally, however, the channel noise will cause a transmitted 

1 to be mistakenly interpreted as a 0 or a transmitted 0 to be 

mistakenly interpreted as a 1 [Berlekamp]. The goal of coding is 

to reduce the undesirable effect of the noisy channel, i.e., to detect 

and correct the channel errors. This is achieved via redundancy. 

3.1 Block Codes 
In a block code, we take a message of k digits, which we wish to 

transmit, annex to them r check digits and transmit the entire 

block of n = k + r channel digits. Assuming that the channel noise 

changes sufficiently few of these n transmitted channel digits, the 

r check digits may provide the receiver with sufficient information 

to enable her to detect and correct the channel errors. 

3.1.1 Binary Block Codes 
Binary block codes are block codes with digits 0 and 1. 

Codewords in binary block codes are n-tuples of zeros and ones, 

and therefore elements of 
nGF )2( . 

3.1.2 The Hamming Geometry 
Hamming defined the notions of length and distance in 

nGF )2( which, from the point of view of coding, are more 

natural than the Euclidean length and distance, and still make 
nGF )2(  a metric space.  

3.1.2.1 The Hamming Weight 

For every 
nGFx )2( , the Hamming weight:   

                )()( xesInNumberOfOnxwH  .  

The Hamming weight has all the properties of a norm:  

a) strict positivity: 0)( xwH , with equality if and only 

if 0x ;  

b) symmetry: )()( xwxw HH   (since xx  ); 

and  

c) triangle inequality:  

).()()( ywxwyxw HHH   

 

Therefore, ),)2(( H

n wGF is a norm space. 

3.1.2.2 The Hamming Distance 
Every norm induces a metric or distance by considering the norm 

of a difference and so Hamming weight (norm) Hw defines the 

Hamming distance )(),( yxwyxd HH  . The Hamming 

distance has all the properties of a metric, so ),)2(( H

n dGF  is 

a metric space, called the Hamming space. 

Especially important is the minimum Hamming distance d 

between a pair of codewords, because it determines how many bit 

errors can be corrected or detected. In particular, at most d-1 bit 



errors can be detected, or at most (d-1)/2 bit errors can be 

corrected. 

3.1.3 Simple Examples 
Among the simplest examples of block codes are the repetition 

code, the simple parity check code and the ISBN code. We will 

use them later to illustrate concepts and to construct more 

complicated codes. 

3.1.3.1 The Repetition Code 
Simple examples illustrating the redundancy principle are the 

repetition codes, which have 1k , r arbitrary, and 1 rn , 

and contain only two code-words: the sequence of n zeros and the 

sequence of n ones. The first digit is the message digit and the 

rest are the check digits. The decoder might use the simple 

majority rule to decode: count the number of zeros and the 

number of ones in the received bits; if there are more zeros than 

ones, decide that the all-zero codeword was sent; if there are more 

ones than zeros, decide that the all-one codeword was sent; if the 

number of zeros equals the number of ones, do not decide, i.e., 

declare a decoding failure. This decoding algorithm will decode 

correctly in all cases where the channel noise changes less than 

half of the digits. If the channel noise changes more than half of 

the bits, the decoder will commit a decoding error. 

It is possible to make tradeoffs between decoding errors and 

decoding failures by modifying the decoding algorithm. For 

example, an extremely cautious decoder might decode the all-zero 

word into itself, the all-one word into itself and fail to decode in 

all other cases. Such an algorithm would detect more errors (at the 

cost of correcting none) and might be appropriate in cases where a 

decoding error would result in a disaster. 

If the block length is sufficiently large, the repetition code 

succeeds in making the probability of decoding error arbitrarily 

small. This comes at a price, which is inefficiency: the 

information rate is only
n

R
1

 . We are usually interested in 

codes with higher information rates. 

3.1.3.2 The Single Parity Check 
Extreme examples of high-rate codes are single parity check 

codes, which contain only one check digit. Usually the check digit 

is chosen so that it results in an overall even parity. 

3.1.3.3 The ISBN Code 
The International Standard Book Number (ISBN) code, which is 

used on nearly all recently published books, is a block code  

which is not binary [Roman]. An ISBN has 10 digits. The first 

digit indicates the language of the book, the next three digits 

denote the publisher, the next five digits represent the book 

number, assigned by the publisher, and the last digit is a 

redundant check digit, designed to detect errors. The check digit is 

the solution of the equation: 

                  01032 10321  xxxx   

in the field )11(GF . 

In this report we focus on binary block codes, i.e., codes with 

digits 0 and 1, because we are interested in applications in 

communications over binary channels. 

3.1.4 Hamming Codes 
Hamming was the first coding theorist whose work attracted 

widespread interest [Early Papers]. In 1950, he constructed a 

family of single error correcting codes, that is, codes with 

minimum Hamming distance 3d , by combining even parity 

checks over selected information positions.  

3.1.4.1 Two Parity Checks 
We first illustrate the Hamming construction with the case of 2 

parity check bits, i.e., with 2r  . In the case of no errors, both 

parity check bits will be zero. If either parity check is nonzero, 

that is a symptom of an error. Motivated by medical diagnostic 

terminology, the collection of all (in this case two) the symptoms, 

is called a syndrome. With two parity check bits, there are 3 

nonzero syndromes. Therefore, the syndrome contains enough 

information to locate a single bit error in a three bit word, so 

3n and 1k . In other words, we are talking about the three 

bit repetition code.  

Next, we determine over which positions parity checks should act. 

If the first parity check is applied over the positions 1 and 3 and 

the second over 2 and 3, then the binary representation of the bit 

position can be used to indicate whether the bit participates in the 

specific check. For example, 1=01, so the first bit participates in 

the first, but not the second parity check. Similarly, 2=10, so the 

second bit participates in the second, but not the first parity check 

and 3=11, so the third bit participates in both parity checks. 

Finally, we determine which bits are information bits and which 

are check bits.  The check bits can be chosen to be in positions of 

powers of 2, in this case, the first and second position. The 

remaining third bit is then the information bit. 

3.1.4.2 Three Parity Checks 

The 2r case is too simple to justify the reasoning via the 

Hamming construction, so we need one more example to illustrate 

the theory and we proceed with the 3r case. Now we have 

7123  nonzero syndromes which allow the code-word 

length 7n and the number of information 

bits 437 k . The check bits are in positions of powers of 

two: first, second and fourth. The remaining bits, the third, the 

fifth, the sixth and the seventh, are the information bits. The first 

parity check is over bits which have a 1 in the least significant bit: 

1, 3, 5 and 7. The second parity check is over bits 2, 3, 6 and 7; 

and the third check is over bits 4, 5, 6 and 7. 

To see error correction at work, let us look at an example. Say we 

want to transmit the information word 1011. First we toss the bits 

into the information bits slots of the code-word: 

110_1__ , then follow with the first parity 

check (over bits 1, 3, 5 and 7) to fill the first bit with 0 and obtain 

110_1_0 , the  second parity check (over bits 

2, 3, 6 and 7) to fill the second bit with 1: 



110_110  and the third parity check (over bits 

4, 5, 6 and 7) to fill the fourth bit with 0 and obtain the code-word 

1100110 , which we transmit. Suppose the 

channel noise corrupts the third bit so that  

1100010  is received. The decoder checks the 

three parity checks and the first two fail, because they contain the 

corrupted bit, and the third succeeds. The syndrome, which 

consists of the error symptoms packed from right to left, i.e., from 

the least significant bit towards the most significant bit, is 011. 

When read as the binary representation of the number 3, it 

indicates that the third bit is corrupted. The decoder corrects the 

corrupted third bit and correctly decodes into 

1100110 , from which the message can be read 

by looking at the information bits 3, 5, 6 and 7. The result is the 

original message 1011. 

3.1.4.3 The General Case 
Let r denote the number of check bits. Then the number of 

syndromes is 
r2 and the number of nonzero syndromes 

is 12 r
. The 0 syndrome represents the state of all received bits 

being correct. The 12 r
nonzero syndromes represent all single 

error locations and we assume no double or higher order errors. 

We need to have at least n syndromes, in order to represent all the 

single errors: nr 12 . The equality represents the optimal 

case nr 12 , which maximizes the code length and 

consequently the code rate. It is not obvious that such codes can 

be constructed, but Hamming showed they can.  

Table 1. Hamming codes 

Number of 

parity 

checks r 

Length

12  rn   

Number of 

message bits = 

dimension 

rnk   

Number of 

codewords
k2  

1 1 0 (useless) 1 

2 3 1 (repetition) 2 

3 7 4 16 

4 15 11 2048 

5 31 26 826 102   

6 63 57 1757 102   

… … … … 

r  12 r  rr 12  rr 122  

 

 

In addition, Hamming demanded that the syndrome gives the 

actual position of the error. This implies that every position that 

has a 1 in its binary representation must be in the first parity 

check. Thus we see that the first parity check covers position 

1,3,5,7,9,11,13,15, …; the second, 2,3,6,7,10,11,14,15,…; the 

third, 4,5,6,7,12,13,14,15,…; and so on. 

Hamming also demanded that codes of different lengths should 

have message bits in the same positions (and consequently parity 

check bits in the same positions). If we start filling the codeword 

with parity check bits and insert message bits, whenever allowed 

by the nr 12 inequality, then bits 1,2 are parity check bits, 

bit 3 is a message bit, bit 4 is a check bit, bits 5,6,7 are message 

bits, bit 8 is a check bit, bits 9,…,15 are message bits, bit 16 is a 

check bit, etc., and the pattern emerges that bits at powers of 2 

locations are check bits and the rest are message bits. This 

constructively proves the existence of error correcting codes of 

arbitrary large length.  

3.1.5 Maximum Likelihood Decoding 
If the decoder receives an n-tuple , which is not a codeword, it 

attempts to decide, which message was sent. Since each message 

results in a codeword being transmitted and since under 

reasonable channel noise conditions a single bit error is a low 

probability event, a double bit error is less likely than a single bit 

error, and the probability for an n bit error decreases with n., the 

most likely codeword to have been sent is the one which is the 

smallest number of bit errors away from the received n-tuple, that 

is, the one which is closest, in Hamming distance, to the received 

n-tuple. In maximum likelihood decoding, the decoder checks the 

distances to all the codewords and picks the closest codeword. 

This is conceptually simple, but there is a problem: the number of 

codewords increases exponentially with the code length, so the 

complexity of the maximum likelihood is exponential. In other 

words, the maximum likelihood algorithm is not practical for 

large codelengths.  

This is the central problem in coding and results in the need to 

impose more structure on codes and then use the structure to 

develop faster decoding algorithms. 

 

3.2 Linear Codes 
Hamming codes impose several even parity checks on the bit 

sequence to define code-words. In other words, code-words are 

solutions of a system of linear equations, over )2(GF , of 

course. In the linear algebra language, the code (the set of code-

words) is the nullspace of the matrix of coefficients of the system 

of equations, called the parity check matrix. Note that the 

nullspace is always a linear subspace (vector subspace) and 

therefore a linear space (vector space). 

It is natural then to relax the constraints of the Hamming 

construction and study the properties of codes which are linear 

spaces. Such codes are called linear codes. More precisely, linear 

codes are k dimensional subspaces of 
nR . 

Linear algebra tells us that the two points of view, parity check 

matrix and subspace, are complementary. This is because every 

subspace can be viewed as the nullspace of the projection matrix 

onto that subspace and the parity check matrix is the projection 

matrix. Conversely, as already mentioned, the parity check matrix 

defines its subspace, which is a linear space. 

A third point of view is to focus on the encoding process, which is 

a mapping from 
kR into

nR , whose range is the code. This 

mapping is linear and is an embedding (1-1 mapping). Therefore 



it can be represented by a matrix, called the generation matrix G. 

The parity check matrix is then conveniently called H. 

To summarize, if 
kRm  is the message, then the 

corresponding codeword 
nRc is given by mGc  and 

0TcH . We follow the coding literature convention, where 

the transpose of the H matrix is used for convenience – easier 

formatting of formulas in text, when each row represents one 

parity check. Furthermore, as in the coding literature, the 

convention is to represent vectors as rows and put them on the left 

of the matrices, because then it is easier to think of the 

corresponding block diagram picture: the message m passes 

through the block G to become a codeword and then passes 

through the block H and gets annihilated. Others, for example, 

Wikipedia, follow the mathematics convention, where matrices 

are on the left and vectors on the right. Notice that by combining 

the generation and the check equations, we obtain 

0)()(  TTT GHmHmGcH , for every 
kRm , 

which implies 0TGH . 

3.2.1 Examples 
The repetition code, the even single parity check code and the 

Hamming codes are all linear codes, while the odd single parity 

check code and the ISBN code are not linear. For the three linear 

codes examples, we construct the generation matrices and the 

parity check matrices. We also note the extreme cases, where the 

dimension k is 0 or n. 

3.2.1.1 The Trivial, or (n,0), Code 
For every length n code, the smallest possible dimension of the 

code is k=0. This code has only one codeword, namely the 00…0 

codeword. This code is called the trivial code and is not useful. 

3.2.1.2 The Universe, or (n,n), Code 
On the other extreme is the universe code, which has dimension 

k=n, where the code is the whole space, that is, every word is a 

codeword. This simply means that all messages are transmitted in 

their original form, without being encoded. 

3.2.1.3 The Even Single Parity Check Code 
The code consisting of all n-tuples with an even number of ones is 

an (n,n-1) linear binary code, called the even-weight of single 

parity check (SPC) code of length n. Of all the (n,n-1) linear 

binary codes, the SPC is the most important, so when we say the 

(n,n-1) code, we will mean the SPC. 

3.2.1.4 The Repetition Code 
Every linear code contains the 00…0 codeword. The smallest 

nontrivial codes contain only one other codeword and are 

dimension 1, or (n,1),  codes. In order to maximize the Hamming 

distance between the two codewords, we choose the nonzero 

codeword to be 11…1. This is the repetition code of length n. We 

will reserve the (n,1) notation for the repetition code. 

The repetition code can be represented by the generating matrix 

G: 

                ]|[]1...111[ 1 PIG   

The corresponding parity check matrix H is: 

     

          



















 

1...001

...........

0...101

0...011

]|[ 1n

T IPH  

 

3.2.1.5 The (7,4) Hamming Code 
All Hamming codes are linear codes because they are constructed 

as nullspaces of the parity check matrix H, where each row 

corresponds to one of the parity checks.  If we follow the 

Hamming construction directly, by putting ones in places which 

contribute to the parity check and zeros elsewhere, then the parity 

check matrix H is:     

    

 



















1111000

1100110

1010101

H   

      

The corresponding generating matrix G has columns 3,5,6,7 equal 

to the columns of the identity matrix 4I , because the 3,5,6,7 

codeword bits are the message bits. This partially determines the 

generating matrix G: 

            





















100_0__

010_0__

001_0__

000_1__

G   

The rest of the matrix G can be determined by observing the 

identity 0TGH . The 1,2,4 codeword bits are parity check 

bits, so the 1,2,4 columns of the H matrix are columns of the 

identity matrix 3I . If we write the remaining bits of each row of 

the H matrix in the corresponding column of the G matrix, we 

obtain: 

             





















1001011

0101010

0011001

0000111

G  

This agrees with the definition of the G and H matrices in the 

Wikipedia, except of course, that G is transposed. 

3.2.2 Systematic Codes 
It is often convenient to group the message bits together at the 

beginning or at the end of the codeword. This bit reordering 



corresponds to reordering of the columns of G and H and yields 

what is called an equivalent code.  

For example, the (7,4) Hamming code written as a systematic 

code has the generator matrix G: 

    ]|[

1101000

0110100

1110010

1010001

4 PIG 



















  

The corresponding H matrix can be obtained simply by: 

     



















1001011

0101110

0010111

]|[ 3IPH T
 

To encode a message, simply multiply it by G. For example, if the 

message is ]0011[m , the codeword is: 

 0100011]0011[  GmGc  

All the codewords of the (7,4) code can be obtained by 

multiplying all the 16 messages by the generating matrix G. The 

result is summarized in Table 2.  

Table 2. Hamming (7,4) systematic codewords 

Counter Message m  Codeword c=mG 

0 0 0 0 0 0 0 0 0 0 0 0 

1              0 0 0 1          0 0 0 1 0 1 1 

2              0 0 1 0 0 0 1 0 1 1 0 

3              0 0 1 1          0 0 1 1 1 0 1 

4              0 1 0 0          0 1 0 0 1 1 1 

5              0 1 0 1          0 1 0 1 1 0 0 

6              0 1 1 0          0 1 1 0 0 0 1 

7              0 1 1 1          0 1 1 1 0 1 0 

       8              1 0 0 0          1 0 0 0 1 0 1 

       9              1 0 0 1          1 0 0 1 1 1 0 

      10              1 0 1 0          1 0 1 0 0 1 1 

      11              1 0 1 1          1 0 1 1 0 0 0 

      12              1 1 0 0          1 1 0 0 0 1 0 

      13              1 1 0 1          1 1 0 1 0 0 1 

      14              1 1 1 0          1 1 1 0 1 0 0 

      15              1 1 1 1          1 1 1 1 1 1 1 

 

 

3.2.3 Distance Invariance 
In general, all pairs of codewords need to be checked in order to 

find the minimum Hamming distance. For linear codes, it is 

enough to check the Hamming weights, because the minimal 

Hamming distance equals the minimal Hamming weight: d=w. 

This is a consequence of the distance invariance property, which 

we now describe. 

For linear codes C, if c is a codeword: 

                                  CCc   

This means that the code is invariant under translations by 

codewords. Since )(),( yxwyxd HH  , the distance 

profile from any codeword (the set of Hamming distances to all 

the other codewords) equals the distance profile from any other 

codeword and in particular the distance profile from 0, which is 

the weight profile. 

Geometrically speaking, the code looks the same no matter at 

which codeword the observer is sitting. Consequently, the 

minimal Hamming distance equals the minimal Hamming weight: 

d=w. 

3.2.4 Orthogonality in Hamming Space 
The concept of orthogonality is defined in Hamming space the 

same way it is defined in Euclidean space, namely through the 

inner product – two vectors x


and y


are orthogonal, if and only 

if their inner product is 0: 

                        



n

i

ii yxyx
1

0


 

However, orthogonality in Hamming space has several surprising 

properties. For example, a vector can be orthogonal to itself. As 

an example, take any vector with an even number of ones. 

Furtherrmore, the projection theorem does not hold and 

consequently the Gramm-Schmidt process cannot be used to 

orthogonalize bases. For example, the (3,2) SPC code C = {000, 

011, 101, 110} does not have an orthogonal basis. 

 

3.2.5 Dual Codes 
Since the orthogonal complement of a vector subspace is again a 

subspace, the orthogonal complement of an (n,k) code C is an 

(n,n-k) code  
perpC , called the dual code of C. If G is the 

generator matrix for C, then the rows of G are a basis for C and if 

H is the parity check matrix for C, then we have seen that 

0TGH . This means that the rows of H are orthogonal to C, 

so they can be viewed as a basis for 
perpC and H can be viewed 

as a generator matrix for 
perpC and G can be viewed as a parity 

check matrix for C. 

The dual code of the dual code is the original code. The dual code 

of the universal code is the trivial code and vice versa. The dual 

code of the repetition code is the single parity check code. Since 

for n=2, the repetition code is the same as the SPC code, 

C={00,11}, this code is a self dual code. The dual of the (7,4) 



Hamming code is the (7.3) code whose generating matrix is the 

Hamming (7,4) parity check matrix H.  

3.3 Cyclic Codes 
Linear codes which are invariant under the cyclic shift are called 

cyclic codes. In other words, in a cyclic code, a cyclically shifted 

codeword is again a codeword. Explicitly, for every 

codeword ][ 011 cccc n  , the (left) shifted 

codeword: 

 

 ][][ 102011   nnn ccccccSSc  , 

is also a codeword. 

 

For example, the repetition code is obviously cyclic, because each 

codeword by itself is shift invariant. The Hamming (7,4) is also 

cyclic, as can be easily checked using Table 2. In particular , the 

0th and 15th codewords are invariant, while the rest of the 

codewords  form two length 7 orbits under the shift S: 

 

        1812611521: S  

 

        39410131473: S  

 

An example of a code which is linear but not cyclic is the (5,2) 

code with the generator matrix: 

 

                 









11010

01101
G  

 

Note that the (left) shift of the codeword 01101 is 

10110 , which is not a codeword. 

 

3.3.1 Additional Operation: Convolution 
Cyclic codes enrich the vector space structure of linear codes by 

adding the operation of cyclic convolution of two vectors. The 

reason the convolution must be cyclic is that the operation must 

be internal. The resulting algebra is isomorphic to the ring of 

binary polynomials of degree n modulo the polynomial   1nx , 

viewed as an algebra over
n

F2 . We denote this algebra by nV . 

To see why we need to mod out 1nx , consider multiplying 

1nx by x . Without modding out, the result would be
nx , which 

is not in the algebra, because the degree is too high, and the 

polynomial multiplication would fail to be an internal operation. 

After modding out, the polynomial multiplication is an internal 

operation and it corresponds to the cyclic convolution, if we view 

polynomials as vectors. This isomorphism between the algebra of 

polynomials and vectors allows us to identify vectors with 

polynomials and in the rest of the report we will be switching 

freely between the two notations. 

 

3.3.2 Hardware Implementation 
The great practical importance of cyclic codes is that they can 

easily be implemented in hardware. 

In hardware implementations, the polynomial algebra can be 

implemented with linear shift registers. The is based on the basic 

capability of the flip-flop element, which is a storage element 

regulated by an external clock, to implement a delay:  the input to 

the flip-flop appears as its output one unit of time later. 

Consequently the flip-flop can implement the cyclic shift, i.e., 

multiplication by x  and a series of flip-flops connected into a 

shift register can represent a polynomial.  

The goal of hardware encoding and decoding of cyclic codes will 

therefore be achieved, if we can show that encoding and decoding 

can be reduced to polynomial operations. We will do this later in 

this section. 

3.3.3 Cyclic Codes as Ideals 

A linear code C  is cyclic if and only if it is an ideal in nV . At 

first sight it may appear that it is harder to be an ideal than a 

cyclic code, because if the product of any codeword and any 

element (polynomial) in nV is in nV , then in particular the product 

of a codeword and x is in nV . However, the two notions are 

indeed equivalent, because multiplication by any polynomial can 

be built from repeated multiplication by x and linearity. 

All ideals (cyclic codes) in nV are principal, i.e., generated by a 

single generator polynomial )(xg  , which is the minimal 

degree nonzero codeword. Therefore, we can say that the code is 

generated by g and write )(gC  . Since Cg , it is obvious 

that the ideal generated by )(xg is contained in C , i.e., 

Cg )( . To see that the converse is true, use Euclid’s 

property, i.e., if  s is another codeword Cs , then divide 

g into it: rgfs  , where the degree of r is smaller than 

the degree of g . Since s and g are codewords, so is r . 

Therefore, 0r , or else g cannot be the minimal degree 

nonzero codeword. From gfs  we see that g divides s and 

therefore )(gC  . It is easy to see that the generator 

polynomial g is unique, if we require that it is monic (leading 

coefficient 1), for if there were another 'g such that )'(gC  , 

then g and 'g would have to divide each other and that is only 

possible if they are equal. 

 We will show later that the Hamming (7,4) code is generated by 

the polynomial 1)( 3  xxxg . 

 

3.3.4 Factoring 1nx  

The generator polynomial g divides 1nx  [2]. This follows 

from Euclid’s property rgsxn 1 , which by modding 



out 1nx implies rgs 0 in nV . Therefore the remainder 

r is a codeword and as such it must be zero, or else it would be 

the minimal degree nonzero codeword. This means that nV is 

never an integral domain and therefore never a principal ideal 

domain, because g is always a zero divisor. 

In the Hamming (7,4) example, 1)( 3  xxxg indeed 

divides 17 x and the quotient is 1)( 24  xxxxh . 

In order to find all cyclic codes, all we need to do is find all 

divisors of 1nx . Let t

n gggx 211 be the complete 

factorization of 1nx into irreducible polynomials over 2F .  

For odd n , 1nx is square free and the factors ig are all 

distinct. To see this, notice that 1nx and its derivative do not 

have any common factors for odd n . The cyclic codes 

)( ii gC  generated by ig are maximal ideals in nV  and are 

called maximal cyclic codes. 

 

3.4 Bose-Chaudhuri-Hocquenghem (BCH) 

Codes 
In cyclic codes, code-words have their generating polynomial as a 

factor. Therefore, the roots of the generator polynomial are the 

roots of the code-words and it is natural to reconsider the cyclic 

codes in terms of roots in an extension field - Galois field. 

Furthermore, the Galois field techniques can be used as a design 

tool to construct codes with a prescribed minimal Hamming 

distance. In particular, the Bose-Chaudhuri-Hocquenghem 

(BCH) codes are designer t-error correcting cyclic codes with 

minimal Hamming distance 12 t  constructed using roots in 

finite fields. 

3.4.1 The Roots of the Hamming Code Generators 
The simplest Hamming code is the (3, 1) repetition code, which 

has the generator polynomial 1)( 2  xxxg with roots 

 and
2 in )2( 3GF . Note that the generator 

polynomial g can be factored into ))(()( 2  xxxg  . 

The generator polynomial 1)( 3  xxxg of the Hamming 

(7, 4) code has roots ,
2 and

4 belonging to )2( 3GF and 

can be expressed as ))()(()( 42   xxxxg . We 

can think of the generating polynomial as being specified by its 

roots. This suggests the idea of designing cyclic codes by 

selecting well chosen sets of finite field elements to be the roots of 

the generator polynomial. Note that the generator polynomial g is 

the minimal polynomial )(xm of . 

The generator polynomial of the Hamming (15, 11) code 

)(1)( 4 xmxxxg  is the minimal polynomial 

of in )2( 4GF  and its roots are ,
2 ,

4 and
8 . 

To construct larger length Hamming codes we consider larger 

Galois fields and higher degree minimal polynomials. In 

particular, we can construct the r check bit Hamming code of 

length 12 r
by selecting a degree r generator polynomial as the 

minimal polynomial of a primitive element  in the 

field )2( rGF . 

 

3.4.2 The BCH Construction 
The BCH construction is a generalization of the method used in 

the previous section to construct Hamming codes. Instead of 

taking the generator polynomial to be the minimal polynomial of a 

single element, BCH takes the least common multiple of minimal 

polynomials of successive powers of elements. Most often, the 

successive powers are of the primitive element and then the 

resulting code is called the primitive BCH code. More 

specifically, for a t -error correcting BCH code, consider the 

sequence of powers of a primitive element  in )2( rGF : 

 

                              ,
2 ,

3 ,…,
t2 . 

 

Then select the generator polynomial g to be the least common 

multiple of the minimal polynomials of the elements in the 

sequence: 

 

        )](,),()()([)( 2321 xmxmxmxmLCMxg t  

 

Note that the even powers in this sequence are redundant, because 

they have a conjugate which appears earlier in the sequence and 

that conjugate has the same minimal polynomial. In particular, in 

the case of Hamming codes, where 1t , it may at first appear 

that  and 
2 need to be considered, but in fact suffices. 

The code length is determined by the Galois field )2( rGF and 

is the same as the length of the Hamming codes, namely 12 r
. 

 

 

3.4.3 BCH Code Examples 
We have already seen that single error BCH codes are Hamming 

codes. Next, we construct a few examples of double and triple 

error correcting BCH codes. 

 

3.4.3.1 Double Error Correcting BCH Codes 
The simplest double error correcting BCH code requires the 

sequence of four powers of a primitive element : 

                      

                               ,
2 ,

3 ,
4 . 

In )2( 3GF these elements have minimal 

polynomials 1)()()( 3

421  xxxmxmxm and

1)( 23

3  xxxm . The least common multiple of these 



two polynomials is their product, so the generator polynomial 

is )1)(1()()()( 233

31  xxxxxmxmxg . 

 

4. LINEAR RECURSIVE SEQUENCES 
Linear Recursive Sequences (LRS) over finite fields are the 

mathematical foundation for scramblers. For the introduction, we 

first illustrate the more familiar LSRs over real numbers, by the 

example of Fibonacci numbers. The analysis tools are analogous 

to solving linear differential equations with constant coefficients. 

4.1 Fibonacci Numbers 

The sequence of Fibonacci numbers }{ ts is defined by the initial 

condition 00 s , 11 s and the recurrence relation: 

        21   ttt sss         for     2t  

The repeated application of the recurrence relation yields the well 

known sequence 

5. SCRAMBLING APPLICATIONS 
Scrambling is a binary bit-level processing applied to the 

transmission signal in order to make the resulting binary sequence 

appear more random [Lee – Scrambling Ch2]. A scrambler can be 

built from shift registers and exclusive or gates. The 

corresponding descrambler can be viewed as a time reversed 

scrambler. This means it has the same structure as the scrambler, 

but the bit stream passes through it in the opposite direction. The 

scrambler and the descrambler need to be synchronized in order to 

function properly. Depending on the synchronization method 

used, scrambling techniques are classified into three categories: 

the frame synchronous scrambling (FSS), the distributed sample 

scrambling (DSS) and the self synchronous scrambling (SSS). 

In the FSS, the states of the scrambler and descrambler shift 

registers get synchronized by being simultaneously reset to the 

specified states at the start of each frame. In the DSS, samples 

taken from the scrambler shift registers are transmitted to the 

descrambler in a distributed manner for use in synchronizing the 

descrambler shift registers. In the SSS, the states of the scrambler 

and descrambler shift registers are automatically synchronized 

without any additional synchronization process.  

5.1 Frame Synchronous Scrambling 
Frame Synchronous Scrambling employs an autonomous system 

consisting of shift registers and exclusive or gates, which is called 

the Shift Register Generator (SRG). An SRG can be engineered in 

such a way to generate a desired Pseudo Random Binary 

Sequence (PRBS) for use in scrambling. In the scrambling part, 

the transmission signal is scrambled by adding the PRBS to it and 

in the descrambling part the same PRBS is added to the scrambled 

signal for the recovery of the original signal. In order for this to 

work, the scrambler and descrambler have to be identical and 

synchronized to the same state. To achieve this the FSS resets the 

scrambler and descrambler SRGs to some predetermined states at 

the beginning of each frame. A well known application of an FSS 

is in SDH/SONET lightwave transmission system. It is composed 

of seven shift registers and one exclusive or gate. The scrambler 

and descrambler generate the PRBSs }{ ks and }ˆ{ ks of length 

127  . The transmission signal }{ kb is scrambled by adding the 

PRBS }{ ks generated by the scrambler SRG. The scrambled 

signal }{ kk sb  is descrambled by adding the PRBS }ˆ{ ks , 

generated by the descrambler SRG, which becomes identical 

to }{ ks when the descrambler SRG is synchronized to the 

scrambler SRG. Therefore, the descrambled signal 

}ˆ{ kkk ssb  becomes identical with the original signal 

}{ kb in the synchronized state. For this synchronization, the 

scrambler SRG state and the descrambler SRG state are both set to 

“1111111” at the beginning of each SDH/SONET frame. 

5.2 Distributed Sample Scrambling 
Distributed Sample Scrambling is similar to FSS, which 

scrambles the signal by adding a PRBS generated by an SRG. The 

difference between the DSS and FSS lies in the synchronization 

method. In the DSS, the samples of the scrambler SRG are 

distributed (transmitted) to the descrambler in parallel to the 

scrambled signal, where they are used to correct the descrambler 

SRG state in such a way that it eventually becomes identical to the 

scrambler SRG state. The samples of the scrambler SRG are 

usually taken and conveyed over some available slots in the 

transmission frame in a distributed manner – hence the name. The 

advantage of DSS over FSS is that in DSS the SRGs are NOT 

reset at the beginning of each frame and thus the transmission 

signal is scrambled by a continuous PRBS stream, resulting in 

superior scrambling. This comes at a cost: in DSS, we need to 

continuously check whether the descrambler SRGs stay in the 

synchronous state. 

An example of a transmission system using DSS is the cell-based 

ATM. In this system, the scrambler and descrambler consist of 31 

shift registers and one exclusive-OR gate and they generate PRBS 

of length 1231  . For synchronization, the samples }{ iz of the 

scrambler SRG state are taken from the PRBS }{ ks  and 

distributed to the descrambler over the Header Error Control 

(HEC) field of the ATM 53 bit cell. The descrambler generates its 

own samples }ˆ{ iz of the SRG state in the same manner and 

compares them to the transmitted ones. If the two sets of samples 

are identical, no action takes place. If they are different, a 

correction logic changes the descrambler SRG state and brings it 

in sync with the scrambler SRG state in at most 31 iterations. 

5.3 Self Synchronous Scrambling 
Self Synchronous Scrambling is quite different from FSS and 

DSS. In SSS, the signal, instead of being added to the PRBS 

generated by the SRG, passes directly through the SRG. The 

scrambled system gets descrambled as it passes through an 

input/output reversed replica of the scrambler. In this operation, 

the transmission signal itself controls the state of the shift registers 

in the scrambler and the scrambled signal controls the state of the 

shift registers in the descrambler. The scrambler and descrambler 

are automatically synchronized once the number of received bits 

reaches the shift register length. The term self-synchronous refers 

to this synchronization operation. 



An example of a transmission system using SSS is the SDH-based 

ATM. The ATM cell stream }{ kb gets scrambled as it passes 

through the 43 shift registers in the scrambling part and the 

scrambled signal }ˆ{ kb 9s descrambled as it passes through the 

input/output reversed shift register block in the descrambler. The 

states of the shift registers in the descrambler become 

automatically synchronized to those in the scrambler after the 

reception of the first 43 scrambled bits.  

The advantage of SSS is that it achieves good scrambling 

performance for both short and long frames. This comes at a 

price: a single bit error occurring in scrambled data due to a 

transmission bit error typically causes a multi-bit error, or error 

multiplication in the descrambled bit stream. 

5.4 Scrambling Sequences 
As mentioned earlier, the function of scrambling is to randomize 

the bit stream before transmission. Therefore, the scrambling 

sequence }{ ks should be such that the scrambled 

signal }{ kk sb  is sufficiently random. If the scrambling 

sequence }{ ks itself is random, then the scrambled signal 

}{ kk sb  is also random. However, in practice, the scrambling 

sequence is generated by a SRG, so it is not random. Therefore, it 

is desirable to investigate the properties associated with 

randomness and to use such propertied in the design of the 

scrambling sequence }{ ks . 

5.4.1 Randomness Properties 
The following properties of binary random sequences are 

particularly useful in the design of scrambling sequences: nearly 

equal number of 0s and 1s, long runs appear less frequently than 

short runs and the autocorrelation function is close to the delta 

function. More precisely, one half of the runs are length 1, one 

quarter of the runs are length 2, one eighth of the runs are length 

3, etc., decaying exponentially, until we reach the longest run, 

which has frequency 1. Sequences possessing these properties are 

called Pseudo Random Bit Sequences (PRBS). 

5.4.2 Shift Register Generators 
Shift Register Generators (SRG) are widely used to generate 

PRBSs . SRGs consist of shift registers and exclusive-OR gates. 

Two types are commonly used in FSS: Simple SRG (SSRG) and 

Modular SRG (MSRG). They differ in how the feedback is 

implemented. Loosely speaking, they have arrows pointing in the 

opposite direction. In the SSRG, the arrows go out from the shift 

register stack into the OR gates, while in the MSRG, they are 

reversed. More precisely, in SSRG, the state }{ ,1 kLd  of the last 

shift register is controlled by the other shift registers. In contrast, 

in the MSRG, the state of the last shift register 

}{ ,1 kLd  controls the state of other shift registers. In fact the 

SSRG and MSRG are the simplest types among many other 

possible SRGs. 

The scrambling sequences and the relevant SRGs are the most 

important parts to understand to properly analyze and synthesize 

scramblers, including the FSS, the DSS and even the SSS. The 

unified description of the three categories of scramblers (FSS, 

DSS and SSS) is provided by the concept of the Sequence Space, 

which we discuss next. 

5.5 Sequence Spaces 
The concept of Sequence Space enables a rigorous definition and 

description of sequences and SRGs. Loosely speaking, a Sequence 

Space is a vector space of sequences satisfying the relation 

specified by a characteristic polynomial. More precisely, for a 

binary coefficient polynomial 
i

i

L

i
xcxP  


0

)( , we define 

the Sequence Space as the set of all sequences: 

},1,0,0:},1,0,{{)]([
0

   kscksxPV iki

L

ik

satisfying the polynomial relation. The  addition and scalar 

multiplication of sequences is defined in the obvious way, 

componentwise, The polynomial )(xP characterizing the 

sequence space is called the characteristic polynomial of the 

sequence space )]([ xPV . 

Since the defining relation of the sequence space can be viewed as 

a recurrence relation ,1,0,
1

  kscs iki

L

ik
 or 

,1,0,
1

0
 



  kscs iki

L

iLk
, it is clear that each sequence 

is determined by the first L elements, which we call the initial 

vector of the sequence. Therefore, the sequence space )]([ xPV  

is L dimensional and has 
L2 elements. In other words, the 

dimension of the sequence space equals the degree of the 

characteristic polynomial. 

5.5.1 Elementary Basis 

Sequences 
iE , whose initial vector is )0,,0,1,0,,0( ie , 

the i-th elementary basis vector of the initial space are called 

elementary sequences. and similarly for 

Leee ,,),0,,1,0( 32  . The set of the L elementary 

sequences 
LEE ,,1  forms a basis for )]([ xPV , called the 

elementary basis. 

 

5.6 The Trace and Norm in a Field 
The trace and norm can be defined in any field, but are 

particularly useful tools in finite fields. In the field of complx 

numbers, the trace of z is simply twice the real part: 

                             zzzTr )(  

And the norm is the modulus squared: 

                                 zzzN )(  

Note that both the trace and the norm are real numbers and that 

the set of real numbers is a subfield of complex numbers. The 



trace and the norm can therefore be viewed as compressing 

information from the extension field to the subfield. 

For finite fields, the trace and the norm compress information in a 

similar way. A finite field
qF can be viewed as a subfield 

of nq
F and both the trace and the norm as functions from 

nq
F to

qF : 

                
12

)(
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nq qqq
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Tr    
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


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N    

In other words, both for complex numbers and for finite fields, the 

trace and is the sum of the conjugates and the norm is the product 

of the conjugates. 

 

 

6. DIFFERENCE EQUATIONS 
 

A linear, constant-coefficient Nth order difference equation (DE) 

for Single-Input-Single- Output (SISO) systems can be written as  

 

)(...)1()()(...)1()( 101 LnxbnxbnxbNnyanyany LN 

,      (Eq. 6. 1) 

 

where N accounts for the N possible delays of the output and L 

accounts for the L possible delays of the input. The system is 

called recursive when previous values of the output enter into the 

calculation of the most recent output, y(n). The system is called 

nonrecursive when there are no previous outputs used in the 

calculation of y(n), leaving the updating to y(n) as a function of 

the x(i) inputs only. The order of the DE depends on the number 

N and not on the number L. 

 

To analyze the stability of the system described by a DE, often the 

terms on the right of Eq. 1 are set to zeros which leaves us with 

the output y(n) and its N delays. We form what is called a 

characteristic equation for a recursive system by substituting in a 

trial solution 
nzny )(  (or, take the z-transform) into the 

homogenous equation DE 

 

0)(...)1()( 1  Nnyanyany N                                                       

(Eq.6.2)  

 

to get 
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By factoring out 
nz  we get  

0)...1( 2

2

1

1   N

N

n zazazaz       (Eq. 6.3) 

where we analyse the portion in the parenthesis which is known as 

the characteristic equation (CE). The N roots from this equation 

are called the characteristic roots and it is from these roots system 

stability can be characterized; noting if the ia  are real numbers 

the roots will appear in conjugate pairs. The system is said to be 

stable (under certain conditions) is each kr  has magnitude less 

than one. Also, we may rewrite the solution to Eq. 2 in terms of 

these roots (and for a given set of initial conditions) in the form: 

 

n

NN

nn

IC rCrCrCny  ...)( 2211                  (Eq. 6.4)                                     

 

Where the subscript IC indicates this is the initial condition 

solution. 

 

Example 1 Fibonacci. 

 

Example 2 V.27 scrambler 
761   xx  as noted in the ITU 

standards. 

We start this example by noting that there seems to be no uniform 

practice for writing these polynomials and hence their 

interpretation can result in resulting implementations between 

different bit construction tools. 

 

So consider a system in which the output is arrived at by adding 

its 6th and 7th delay. We can then write this equation as : 

 

)7()6()(  nynyny                                     (Eq. 6.4) 

 

or, in homogeneous form, 

0)7()6()(  nynyny .                            (Eq. 6.5) 

 

This leads to the CE  

 

01 76   zz  

 

The exponents of this equation are in descending order so that we 

can find the seven roots to this 7th degree equation using Matlab’s 

companion matrix form to find roots through: 

 

r=roots([1 0 0 0 0 0 -1 -1]; 

 



Then, in order to find the IC solution we formulate system of 

equations as a function of the power of the roots and a set of 

seven independent initial conditions to find the seven 

corresponding coefficients Ci as indicated in Eq 4.The initial 

conditions come knowing the first seven outputs of the scrambler 

impulse response which we find either by hand or by using 

Matlab’s filter command. 

 

 

 The code is given by: 

 

r=roots([1 0 0 0 0 0 -1 -1]);  

rt=r.'; 

rt2=rt.^2; 

rt3=rt.^3;rt4=rt.^4;rt5=rt.^5;rt6=rt.^6; 

M=[1 1 1 1 1 1 

1;rt;rt2;rt3;rt4;rt5;rt6]; 

IM=inv(M); 

yimpulse=filter(1,[1 0 0 0 0 0 -1 -

1],[zeros(1,7)],[1 0 0 0 0 0 0]); 

C=IM*yimpulse'; 

Ct=C.'; 

% The IC equation is given by 

yIC67(n)=Ct*r.^(n-1); 

% Find the first 127 coefficients using 

the below for loop. 

for n=1:127 

    yIC67(n)=Ct*r.^(n-1); 

end 

 

The roots and the corresponding coefficents to be inserted into 

equation 4 are as follows 

 

r1 – r7  :  1.11,  0.62 + 0.90i, 0.6271 - 0.90i, -0.36 + 0.95i, 

-0.36 - 0.95i, -0.81 + 0.26i, -0.81 - 0.26i 

c1 – c7  : 0.15 - 0.00i, 0.15 - 0.01i, 0.15 + 0.01i,  0.15 - 

0.02i,  0.15 + 0.02i,  0.11 - 0.0372i,  0.11 + 0.0372i. 

 

Note that the magnitude of the roots are as follows: 

 

Abs(r1-r7) : 1.11,  1.09, 1.09, 1.02, 1.02, 0.85, and 0.85. 

 

Notice that some of the magnitudes are greater than 1. This 

indicates that the system is unstable. This means that as n 

increases, the sequence y(n) also increases. Now in our system of 

interest, that being scramblers, our resulting sequence should be 

recalculated using modulo 2 arithmetic, since we are in the bit 

domain. We were looking for a way to expose and exploit the 

underlying instability through these equations but have been 

unsuccessful. We have plotted the output sequence with and 

without the modulo 2 operation. 

 

 

It is with the first plot where we would like to incorporate a 

measure of entropy in the context of Tsallis entropy. Tsallis 

entropy is a more general form of Shannon entropy. We know by 

looking at the magnitudes of the roots that the sequence will grow 

without bound. The rate of increase is in proportion to the 

magnitude of the root. Each scrambler has with a unique curve 

similar to the first plot. 

   The second plot shows how, under this implementation scheme 

which we have carefully annotated and defined, the sequence of 

bits resulting from an impulse response (a 1 follwed by 126 zeros) 

appears. This series of 127 bits is a deterministic sequence which, 

if we incorporated more zeros into the impulse ,would repeat itself 

every  127127   bits where 7 is the degree of the 

polynomial or number of delays in the Eq. 2. The understanding 

why there are 127 bits before the sequence repeats itself comes 

from the notion of a maximal length sequence associated with 

certain properties of Galois fields. The same properties og Galois 

fields are used to design EDAC’s.  

 

From the research on EDAC’s we see that the coding process can 

be done in two domains: the systematic and non-systematic 

domains. In the former domain we take a message word and 

convolve it with a polynomial, which in form is exactly like that 

of a scrambler, to create a code word. In the latter form the 

message word is shifted to the left which then goes through a 

division process that ‘systematically’ rewrites the message word 

along with its remainder found in the division process. The 

convolution process is identified with the FIR filter while the 

division process is identified with the IIR filter. Although, in the 

theoretical sense, any FIR filter can be written as an IIR filter and 

visa versa, this is not exactly true when implementing the filters in 

a computer. A computer does well with the finiteness of a FIR 

filter but does not handle the element of infinity associated with 

IIR filters very well at all. But the comparison’s are interesting. It 
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turns out that associated with every scrambler/EDAC system, used 

in the context of modulo 2 arithmetic used to filter bits,  carrying 

out the process can be done in either of the domains described 

above. As an observation we see that we can identify the short 

term application of the systematic EDAC division process with 

the long term IIR scrambling process and also identify the slightly 

longer term convolutional nonsystematic EDAC process with a 

shambling process. A subtle point to come out of the above plot is 

that although the DE if left free from the operation of modulo 

arithmetic grows without bound the sequence that results from 

applying modulo arithmetic results in a period sequence. This 

periodic sequence can in fact be used to scramble a bit stream as 

effectively as the    

implemented system equation written in Eq. 4. The difference is 

that in Eq. 4 the output sequence is arrived at by using two taps 

(the 6th and 7th delay points) in the context of an IIR filter while in 

the context of a FIR or convolutional  filter the output would be 

arrived at by substituting  the 127 point sequence found from an 

impulse response to the scrambler, into the bi’s found on the right 

side of Eq.4 and setting the ai coefficients to zero. The reason that 

the IIR filter is used over the FIR should be obvious; required are 

a lesser number of taps to implement in hardware.  

   

Learning that we can in fact rewrite the IIR filter in terms of an 

FIR filter allows us to use a blind deconvolution algorithm to 

attempt to determine (blindly) the coefficients of the scrambler or 

likewise uncover the message word from a nonsystematic EDAC 

coding.scheme. Referring to a previous report  we formulate a 

construction of a matrix system designed for a convolution or FIR 

process. The idea is that under certain assumptions, when made 

available are the outputs of two sequences of either codewords or 

scrambled bits that share a common underlying sequence, namely 

the scrambler or EDAC polynomial, the input sequences can be 

found and hence the scrambler or EDAC polynomial coefficients 

can be determined. Two problems have been identified with this 

approach. The first is that this approach works when the modulo 2 

operation is not used. The second problem is that with scramblers  

the process used in the matrix method assumes an FIR filter but 

scramblers are clearly IIR. The 127 point sequence does not 

exactly replace the IIR sequence because to do so the sequence 

would have to be repeated infinitely many times. Hence, 

truncation is a problem. We will show what we have so far.  

 

6.1 Entropy of Scrambled TypeA Data 
We investigate the entropy as a function of the window size for 

data scrambled with a number of different scramblers. The results 

are shown in Table 6.1. Note that for framed data, the entropy 

decays with the size of the window, because as the window grows 

larger, the regularity and predictability of the scrambler begins to 

manifest itself. 

 

The outline of the code is: 

M=[2,41;   2,4;   33,35;  

   39,41;  31,35;  

   31,39;  7,37;  6,8; 

    2,3;   37,44;  29,35; 

   35,39;   4,39;   6,45; 

    6,41;   2,35; 6,42;43,45; 

    4,43;   2,31;   1,7]; 

for k = 1:iterations 

   [x,states] = filter(1,D, 

       S((k1)*window+1:k*window), 

       states); 

   R = [ R, mod(x,2) ]; 

   states = mod(states,2); 

end 

R=R.^1.4; 

for k3=1:length(cc) 

   k2=cc(k3); 

   pp=fix(length(R)/k2); 

   v=reshape(R(1:pp*k2),k2,pp)'; 

   szv=size(v,1); 

   b=2.^(0:k2-1); 

   w=v*b'; 

   h=hist(w,nbins); 

   h=h/sum(h); 

   sh(k3,kk)=abs( 

           sum(h.*log2(h+eps))); 

end 
 

The blue dots denote the impulse responses (lrs) of the 

scramblers, the red dots represent scrambled synthetic framed data 

and the green dots represent scrambled TypeA data. 

 

Table 6.1. Entropy of Scrambled Data 
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6.2 Blind Descrambling 
We have succeeded in extending the application range of the 

multipath mitigation algorithm to the area of blind descrambling, 

albeit only for the restricted case of short message lengths. This 



result is particularly interesting in view of the fact that in this 

setting, the multipath equations are not satisfied exactly, only 

approximately, due to truncation of polynomials. Therefore, 

strictly speaking, there is no precise mathematical justification for 

the algorithm to work. However, through numerical experiments, 

we have shown that there are cases, in particular, when the 

message length is short, where the algorithm succeeds. 

We present such an example, the algorithm and the successful 

application of the algorithm and the corresponding solution in the 

following code snippet: 

w=mod(filter(1,[1 0 0 -1 -1], 

             zeros(1,200), 

            [1 0 0 0]),2) 

w=w(1:15); 

r=repmat(w,1,200); 

m1=[1 1 0 1 1]; 

m2=[1 1 0 0 1]; 

y1=(conv(r,m1)); 

y2=(conv(r,m2)); 

for k=2:504 

   c1=convmtx(y1(1:k)',5); 

   c2=convmtx(y2(1:k)',5); 

   C=[c2 c1]; 

   CC=(C'*C); 

   [aa ss]=eig(CC); 

   aaak(:,k)=aa(:,1); 

   sssk(k)=ss(1,1); 

   ssskk(k)=ss(2,2); 

   ssskkk(k)=ss(end,end); 

end 

figure(1) 

subplot(3,1,1),plot(sssk) 

subplot(3,1,2),plot(ssskk) 

subplot(3,1,3),plot(ssskk-sssk) 

figure(2) 

imagesc(aaak) 

 
Table 6.2 shows that the algorithm succeeds in finding the correct 

solution as long as the size of the multipath matrix is chosen to be 

large enough. Note that each column in Fig 6.2 represents the 

solution and that solutions must first be normalized, because from 

the linear algebra point of view, any multiple of a solution is also 

a solution, while for practical purposes, the numbers are binary. In 

particular, note that the negative of a solution is also a solution, 

which explains the alternating red – blue pattern. Green appears in 

a band, because it represents zero. 

 

Table 6.2. Blind descrambling 

50 100 150 200 250 300 350 400 450 500

1

2

3

4

5

6

7

8

9

10

 

To provide some insight into the working of the multipath 

algorithm in this setting, we plot the smallest two eigenvalues and 

their difference as a function of the multipath matrix size in Table 

6.3. Ideally, if the multipath equations were holding exactly, the 

smallest eigenvalue would be 0 and the corresponding eigenvector 

would be the solution. Note that the smallest eigenvalue is not 

zero, except for trivially small sizes of the multipath matrix. 

However, after the initial growth region, its value reaches a 

plateau. This is to be contrasted with the behaviour of the second 

smallest eigenvalue, which continues growing. In a sense, the 

smallest eigenvalue is “approximately zero”, at least compared to 

the other eigenvalues. We therefore conjecture, that the 

eigenvector corresponding to the smallest eigenvalue continues to 

represent the solution, even though the theoretical justification is 

lacking, Our experiments show that this is indeed the case when 

the scrambled messages are very short. Unfortunately, it is not 

true in general. 

 

Table 6.3. Roots Space 
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6.3 Fractal Structures in Root Space 
During the investigation of the difference equations, their 

solutions and the relationship with the roots of characteristic 



polynomials, we have observed that the set of roots of 

characteristic polynomials exhibit interesting structures and in 

particular fractal behaviour. These results are presented in Fig. 6.4 

and Fig. 6.5. 

 

Table 6.4. Roots Space 
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Table 6.5. Fractal Structures 
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6.4 LRS Growth Rates 
Fig. 6.6 summarizes our investigation of the growth rates of the 

linear recursive sequences defined by all the different binary  

polynomials of degree six. Each curve represents one such linear 

recursive sequence (before the modulo 2 operation). The vertical 

axis is logarithmic. Since all the curves have an asymptote, this 

shows that in the asymptotic region, the growth is exponential and 

it is determined by the largest root of the characteristic polynomial 

of the difference equation. 

The brief sketch of the code is: 

 

for k=1:2^n*2 

  ss=s(k,:);       

  r=roots(ss); 

  rt=r.'; 

  rt2=rt.^2;    

  rt3=rt.^3; 

  rt4=rt.^4; 

  rt5=rt.^5; 

  rt6=rt.^6; 

  m2=[ones(1,n+1); 

      rt;rt2;rt3;rt4;rt5;rt6]; 

  Iaa=inv(m2); 

  yss=filter(1,ss,[zeros(1,100)], 

            [1 zeros(1,n)]); 

  c=Iaa*yss(1:n+1)'; 

  ct=c.'; 

  for nn=1:200 

     xss(nn,k)=ct*r.^(nn-1); 

  end 

end 

plot(log10(abs(xss))) 
 

Table 6.6. LRS Growth Rates 
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7. CONCLUSION AND OUTLOOK 
Finite fields provide the mathematical foundation for 

understanding coding and scrambling. The first part of this 

research outlines the mathematical techniques which we believe 

will be help us in future research on blind decoding and 

descrambling. 

In the second part, we present the results. We have succeeded in 

applying the multipath mitigation algorithm to blind descrambling 

for the case of short messages and observed fractal self similar 

structures in the root space of the scrambler, whose implications 

are as of yet unknown. The problem of bit sequences in the 

modulated domain is hard and deserves further study. We plan to 

address it in the future. 
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