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ABSTRACT 
 
We address the problem of blind deconvolution in a two 
channel system by analyzing the singular vectors of the 
system. In particular, we study the singular value 
decomposition (SVD) of a typical two block system of 
convolution matrices made from data measured on two 
receivers. We focus on the singular vectors, rather than on 
the singular values. We discover that the singular vectors  
can be divided into four sub-structures.  We conjecture that 
this four quadrant sub-structure separates the two channels 
into the two source signals and the two multipath functions.   
The analysis of the singular vector substructures in a very 
controlled simulation results in an improvement in 
determining the number of channel coefficients and a better 
understanding of channel characteristics.  

 
1. INTRODUCTION 

 
    The goal of blind deconvolution is to estimate the number 
of channel coefficients and their values in order to construct 
a filter that will offset the effects of multipath and additive 
noise.  Many algorithms have been designed that first 
calculate filter length based on the eigenvalue outputs [1].  
Historically, in a high signal to noise (SNR) multi-channel 
system, the number of zero eigenvalues has been identified 
with the dimension of the nullspace which in turn is 
identified with the number of multipath coefficients. 
However, as the SNR is lowered, or a DC offset is added, 
the estimations fail due to the smoothing out of the 
eigenvalues at the transition from the nullspace to the signal 
subspace [2].  
    The singular value decomposition (SVD) algorithm has 
long been a workhorse for subspace techniques involving 
multiple channels. In our analysis, we exploit the 
relationship between the SVD of a matrix M and the 
eigenvalue decompositions (EVD) of MM T and TMM . 
The left singular vectors of the matrix M are the 
eigenvectors of the matrix MM T , the right singular 

vectors of the matrix M are the eigenvectors of the matrix 
TMM and the singular values of the matrix M are the 

square roots of the eigenvalues of (both) the matrices 
MM T and TMM . This relationship allows us to 

transparently move from SVD analysis to EVD analysis and 
back in our theoretical analysis. Numerically, of course, the 
SVD is superior, so we employ SVD in all the simulations 
and tests.  
    We use two other important tools in our theoretical 
analysis. The first is the beautiful connection between 
circulant matrices and the Discrete Fourier Transforms 
(DFT) – the DFT matrix diagonalizes circulant matrices. 
Furthermore, the DFT of the generating vector of the 
circulant matrix equals its spectrum, i.e., the sequence of its 
eigenvalues. 
    The second tool is the asymptotic equivalence of circulant 
and Toeplitz matrices. This allows us to approximate the 
matrices arising in our study, which are Toeplitz, by the 
corresponding circulant matrix. Consequently, we can 
transfer the powerful theoretical results, valid for circulant 
matrices, approximately (valid in an asymptotic way) to 
Toeplitz matrices. 
    Using a matrix formulation based on the convolutional 
model for two channels [3], the EVD output is analyzed in 
detail. We have found a subsystem of four quadrants of 
eigenvectors that make up the EVD; two quadrants relate to 
the multipath spaces of the two channels and two quadrants 
relate the signal subspace from each channel. 
     For a single channel, the DFT of a sequence is directly 
related to the EVD of its corresponding (usually full rank) 
circulant matrix [4]. We conjecture that this result can be 
extended to the case of multiple channels. We will 
demonstrate that the way eigenvalues are calculated is 
critical to getting out meaningful information from the so 
called nullspace especially in the presence of noise. 
Specifically, when there is no noise, multiple zero 
eigenvalues are in fact all equal to zero and the eigenvectors 
reflect this commonality when measured in either of the 
frequency or statistical domains [5]. In the case of a rank 



one nullspace it has been shown that the single nullvector 
matches the channel vector up to a phase ambiguity [6]. 
However, either adding noise or adding a DC offset to the 
received data before forming the two-channel data matrix 
changes the zero eigenvalues into a set of monotonically 
increasing non-zero eigenvalues. This apparently allows for 
a meaningful DFT to appear in the nullspace for each 
channel.   
 

2. CIRCULANT MATRIX AND THE DFT 
 
Starting with the sequence x = {x1,x2,x3,…,xm}, let  
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. C is a circulant 

matrix, F is a Fourier transform matrix whose columns form 
a very special basis and are eigenvectors of C. Each column 
is associated with a frequency in the DFT. Λ is the diagonal 
matrix of the DFT values of x. Through the spectral 
decomposition theorem, these DFT values give amplitude 
(measure) to the frequency basis functions. C can be written 
as  where the H stands for hermitian. As already 
mentioned the eigendecomposition of a circulant matrix is 
equivalent to the DFT of the sequence of numbers that make 
up the circulant matrix.  
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3. FORMING THE BLOCK TOEPLITZ MATRIX 

 
Multipath, for this paper, applies to a signal that has been 
corrupted by adding in either early or delayed copies of 
itself. One way to look at the problem is to model the 
received signal as a convolution process in the time domain. 

∑
=

−=
b

au
ugutsty )()()(   ,                                            (1) 

where y(t) denotes a received signal modeled as the 
convolution between a source signal s(t) and a travel path 
function g(t).  We can write out (1) in terms of a 
convolution matrix and two vectors. A convolution matrix 
has a Toeplitz structure, which asymptotically, has the 
structure of a circulant matrix. We write out a trivial 

example where it is implicitly assumed that the length of 
each function is known:  
                                         (2) 
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If we know two out of three functions, then we can solve for 
the third. However, if we only have the received signal y, no 
unique solution on either s or g can be made. However, 
given two snapshots of a source bearing signal, either from 
two receivers or from fractionally spaced samples of a 
single receiver [2], a unique solution can be made (under 
certain assumptions). We will suppose that there are two 
snapshots taken at the same time from two receivers. Both 
snapshots are modeled as being composed of the same 
signal but corrupted with different (do not share common 
zeros in the z-domain) multipath functions. This is written 
as: 

)()()()()()( 2211 tgtstyandtgtsty ∗=∗= .        (3) 
Now by convolving the first receiver with multipath   
function two and the second receiver with multipath  
function one the following equations are formed: 
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that can be summarized as 
0)()()()( 2112 =∗−∗ tgtytgty   .                   (5)  

Now replace the convolution by matrix multiplication using 
the convolution matrices of the data and write the  as 
vectors. Then (5) becomes    
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where Yi is the convolution matrix of yi and the matrix M 
= [ ]12 YY −  is a (1x2) block matrix.  Again, we will 
write this equation out in terms of vectors and matrices but 
here we will pad each gi with one zero and make some 
observations. As an example we write out the case for a two 
dimensional nullspace where the subscript (i,j) refers to the 
ith receiver and the jth sample, the true length of each 
multipath function, gi , is two samples long, and each 
received signal, yi , is four samples long. 
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Notice that under the shifting property the two different g 
vectors give the same result after matrix multiplication. 
Clearly, each g is linearly independent of the other. This 
says that instead of a one dimensional nullspace which 
corresponds to the multipath function (up a phase shift) we 
have a two dimensional nullspace. Thus we observe that 
each time we add a column to each of the convolution 
matrices (and increase the nullspace dimension) we can add 
a zero to either end of the . Clearly, we can tie this 
constructed basis to the basis generated by the eigenspace 
decomposition via a transformation.  

sgi '

    

 

    Noting that (6) is an equation set to zero, simply 
multiplying each side of the equation by the transpose of the 
data matrix will provide a square symmetric matrix which is 
block Toeplitz (asymptotically Circulant.) Now consider Z 
= MT M. This 2x2 matrix has the following form and is 
explored in section 4: 

Fig. 1.  (a-b) The two snap shots. (c) The M matrix of   equation 6. 
(d) The Z matrix of equation 8. 
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 4. SIMULATION WITH THEORTICAL 

IMPLICATIONS 
 

    Two snapshots are shown in Figures 1a and 1b which 
form the M matrix in Figure 1c. The length of each snapshot 
is 108, resulting from the linear convolution of a 100 sample 
thirty hertz source signal (dt=0.01 seconds between 
samples) with two uncorrelated and sparse multipath 
functions of length 9 (e.g. [1 0 1 0 -1 1 0 0 1] and [1 1 0 0 1 
0 -1 0 1]). The number of columns for each Yi is set at 50, 
which is equivalent to padding each gi with 41 zeros.  Figure 
1d represents the Z matrix where the four quadrants are 
easily seen and have dimension 50 x 50. 

Fig. 2.  (a) The set of eigenvalues normalized and ordered 
smallest to greatest. (b) Imagesc (Matlab) view of  100 columns 
of ordered eigenvectors corresponding to the eigenvalues. (c) 
Imagesc of the DFT (spectrum) of each column vector. 
 

seen about the 42nd column. It appears that the EVD shifted 
the four quadrant division to the left. Using the ideas of the 
circulant matrix, a column by column DFT of this matrix 
should indicate the structure of the frequency basis 
functions scaled by the corresponding eigenvalues. Figure 
2c is the DFT (technically the spectrum) of Figure 2b. The x 
axis represents the eigenvector number and the y axis 
represents the frequency in Hz. Recall that df =1 Hz by 
design and 50 Hz represents Nyquist. For example, looking 
at column number 100 we see two points of two vertexes 
occurring along the y axis at 30 Hz and 70 Hz, the (positive 
and negative) frequencies associated with the (principal 
component) source signal. There is a distinct partition at 
eigenvector 42. The vectors to the left seem to exhibit the 
same DFT for each vector in the multipath space. All 
frequencies show up like the DFT in a noise signal. On the 
other hand, to the right of eigenvector 42 there is a 
(transposed) 2-D image of what appears to be a 1-D DFT of 
the concatenation of the received signals, y1 and y2. The 
vectors on the right side give what we expect from a 

    Figure 2 shows the eigendecomposition of Z. In Figure 2a 
the 100 eigenvalues are plotted. The eigenvalues are 
normalized with a log scale. Slight numerical errors are 
show up on the eigenvalues which are slightly negative 
(which in theory, for symmetric matrices, should not be so). 
The first 42 eigenvalues represent the set of (identically 
equal to) zero eigenvalues indicative of the nullspace 
associated with the padded g functions which make up the 
multipath space. It is at this point many research papers 
point out that reducing the number of columns of each Yi by 
41 would leave us with a one dimensional   nullspace (42-
41=1) and hence two nine dimensional multipath functions 
(50-41 =9 and which is a stacked 18 dimensional vector in 
the solution space). This is fine in theory. However, by 
looking at the eigenvectors, is there something more to 
exploit in case we have something different than the ideal 
case? We think the answer is yes. In Figure 2b we show as 
an image (Matlab) the 100 columns of eigenvectors. Four 
quadrants are still visible and there is a division that can be  



circulant matrix formed from one of the received signals. A 
reason the left side appears as it does can come from group 
theory and the idea of closure; elements from the same 
subgroup share a common characteristic. 
     Figure 3 is produced by adding a small DC offset to both 
y1 and y2 before producing the M matrix. The off diagonal 
zeros remain zero while each yij is increased by this offset. 
This has the effect of making sure there are not any zero 
eigenvalues. This can be seen by the smoothing out of the 
eigenvalues in Figure 3a. (Adding noise to each time series 
has a similar effect on the multipath space). There is no 
longer a set of (equal) zero eigenvalues. Notice that there is 
no longer an indication of the break at the 42nd eigenvalue. 
However, the vectors still show a partition in both the time 
frequency domains (Figures 3a and 3b). The source signal 
subspaces (right sides) from both figures (2b and 3b) are the 
same.  However, with respect to the DFT of the multipath 
spaces from Figures 2b and 3b, there is a dramatic 
difference. The multipath portion of the image in Figure 3b 
exhibits a ‘nice’ frequency response. It seems that with 
unequal eigenvalues the DFT is allowed to show some 
underlying frequency response. 
     Furthermore, realizing the significance on how the 
concatenated g basis vectors are formed it is further 
reasonable to study the four quadrants separately. Recall 
that each column in the nullspace is related to a 
concatenation of a basis function from multipath function 
one and multipath function two. Apart from some 
orthogonal transformation (we conjecture) the top left 
quadrant represents the multipath associated with channel 
one and likewise the bottom left quadrant is associated with 
the multipath of channel 2. Like before we plot the column 
wise DFT of these quadrants in image form. These are seen 
in Figures 4a and 4b.Note that we had to pad each column 
with 50 zeros before performing the DFT in order to 
maintain a consistent df = 1 Hz and Nyquist at 50 Hz. The 
images in 4c and 4d represent the filtered source signal 
subspaces, for which channels we are not sure at this time. 
  

5. CONCLUSIONS 
 
In this paper we have shown that the eigenvectors hold 
information in the frequency domain either with or without 
noise. The four quadrants seem to be an artifact from the 
product of the matrix and its transpose. Interestingly the 
dimensions of the quadrants within the Z matrix change in 
the eigenvector representation reflecting the calculation of a 
multipath space. We have conjectured that since we are 
using circulant type matrices there should be some relation 
between eigenvectors and the DFT and that it may be useful 
to apply this idea to the so called nullspace especially in the 
presence of a DC offset or noise. A detailed look at each 
quadrant may shed some light on the characteristics of the 
channel response. In any event, using the information in the 
eigenvectors may help to determine channel order when 

subspace algorithms using eigenvalues can no longer show 
the break between spaces. 
  

 
Fig. 3.   The EVD after adding a DC offset. (a) The set of 
eigenvalues normalized and ordered smallest to greatest after 
adding dc offset. (b) Imagesc (Matlab) view of 100 columns of 
ordered eigenvectors corresponding to the eigenvalues. (c) 
Imagesc of the DFT (spectrum) of each column vector. 
 

 
Fig. 4.  DFT Images of individual quadrants. (a) Channel one 

multipath. (b) Channel two multipath. (c) Source Signal 
subspace. (d) Source signal subspace. 
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