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Abstract

This paper addresses the problem of separating a source signal from

its multipath when the signal is unknown.

Many signal processing methods, including Blind Deconvolution and

Blind Signal Separation, designed to help the separation process require

knowledge of the filter length. In these methods the filter length is

usually estimated from a function of eigenvalues of the multichannel

matrix associated with the underlying process. While these methods

work well in theory, they often break down in the presence of noise.

Instead of looking at the eigenvalues, we propose to estimate the

filter length from the null space, also referred to as the multipath sub-

space, of the multichannel matrix. The multipath subspace is spanned

by vectors which exhibit circular structure. This structure aids in de-

termination of the filter length.

This paper focuses on the two channel separation problem. A com-

putational algorithm is proposed for joint order detection and channel

estimation from the structured basis of the multipath subspace. In low

signal-to-noise environments its performance compares favorably with

the performance of algorithms which are based on the distribution of

eigenvalues only.
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1 Introduction

Multipath is a term that applies to a signal that has been corrupted by either

advanced or delayed copies of itself. Signals contaminated by multipath are

modeled as a convolution process which in the discrete time domain can be

expressed as

y(n) =

L−1
∑

i=0

s(n − i)g(i) + v(n)

where y(k) denotes the kth sample of the received signal, s(k) is the the kth

sample of the source signal, v(n) represents additive noise, and g(k)’s describes

the channel of length L.

In many applications neither s nor g are known and hence signal processing

techniques for estimating s and g require either multiple receivers or fraction-

ally spaced samples in the case of a single receiver. In any case, the input data

to a signal processor consists of M > 1 sequences of N samples each. This is

illustrated in Figure 1.

It is known that in the noiseless case, vi(n) = 0, under some mild assump-

tions, channels {gm(l)}M,Lm−1
m=1,l=0 can be uniquely identified from {ym(n)}M,N

m=1,n=1,

[6], [8].

In the past the first step in the blind channel estimation problem was to

determine the size of the multipath subspace associated with channel equal-

ization. In the event that the dimension of the multipath subspace was larger

than one the dimension of the multichannel matrix had to be resized in order

to produce the one-dimensional multipath subspace. Research suggested that

only then could the multipath be identified.

However in this paper we show that in the case of the multidimensional
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multipath subspace it is not necessary to first reduce its dimension to find the

multipath solution. Rather, the desired multipath solution can be identified

directly from the basis of the subspace spanned by a set of circularly shifted

vectors.

In this paper we show how this circularly shifted basis vectors can be

achieved from multidimensional multipath subspace by a sequence of elemen-

tary linear transformations. In the process of doing that the filter length and

filter coefficients can be easily identified. This method works well in the pres-

ence of AWGN noise and performs favorably against eigenvalue based methods

and is an improvement over the method that contrasted characteristics of sin-

gular vectors spanning the signal and null spaces which was proposed in [4].

We will concentrate on the case of two receivers although our derivations

can be directly extended to the case when there are more receivers.

2 Joint order and channel estimation from sin-

gular values

Suppose that there are two snapshots y1(n) and y2(n) taken at the same time

from two receivers. Both snapshots are modeled as being composed of the same

signal but corrupted with different multipath functions. The two snapshots can

be expressed as convolution of signal s with the multipath channels g1 and g2,

y1(n) = s(n) ∗ g1(n) and y2(n) = s(n) ∗ g2(n)

where ’*’ denotes the convolution operation.
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By convolving each of the received signals with the channel function of the

other received signal we obtain

y1(n) ∗ g2(n) = y2(n) ∗ g1(n) (1)

Assume that N samples of the two discrete-time signals were recorded. Let y1

and y2 be vectors composed from samples, y1 = {yj,1}N
j=1 and y2 = {yj,2}N

j=1

where yj,i = yi(j). Then (1) can be expressed in the matrix form (2)

Y







g1

g2






= 0 (2)

where Y = (Y2 − Y1), gi = {gj,1}Li

j=1 is a vector of channel coefficients, and Yi

is the convolution matrix of yi,

Yi =





















































y1i

y2i y1i

...
. . .

yni y1i

...
...

yNi yN−Li+1,i

yN1 yN−Li+2,i

. . .
...

yNi





















































, gi =



















g1i

g2i

...

gLii



















(3)

Here, the length of channel gi is Li and hence the matrices Yi have dimensions

(N + Li − 1) × Li, i = 1, 2. We will assume that L1 = L2 = L (this can be

assured by padding the shorter channel with zeros).
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It can be shown [8] that in the noiseless case under some mild assumptions

the matrix Y has one dimensional nullspace. In (2) the nullspace is determined

by a vector which is formed by concatenating the two multipath channel vectors

g1 and g2. Equation (2) allows for the calculation of (a scaled version of) g by

finding the one dimensional nullspace of Y . For that reason we will refer to

this nullspace as a multipath subspace.

2.1 Noisless case

In practice the length of the multipath is not know. A general way to recover

g from Y is to overestimate the length of g1 and g2, collect delayed copies of

the signals y1 and y2 into a block Toeplitz matrix Y (ext) (which is defined in

the next Section), calculate the dimension of its nullspace, and next reduce the

number of columns in Y (ext) so the resulting matrix is the desired matrix Y in

(2), [6], [8]. This one dimensional nullspace is spanned by the right singular

vector of Y corresponding to its zero singular value. More precisely, the process

proceeds as follows.

Say that the extended matrix Y (q) =
(

Y
(q)
2 − Y

(q)
1

)

has p = 2(L + q − 1)

columns, q ≥ 1. One can determine the dimension of the nullspace of Y (q)

from its singular value decomposition (SVD),

UΣV H = Y (q).

If there are q zero singular values then removing the last q − 1 columns from

each of the matrices Y
(q)
1 and Y

(q)
2 results in the desired matrix Y .
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2.2 Noisy case

In the presence of noise the received data vectors ŷ1 and ŷ2 are perturbed

versions of the true noiseless vectors y1 and y2. Thus we have

ŷ1 = y1 + e1 , ŷ2 = y2 + e2

where ei represent uncorrelated noise evectors. Thus the data matrix Ŷ (q)

satisfies Ŷ (q) = Y (q) + E where E is a block Toeplitz matrix constructed from

the noise vectors e1 and e2. It can be shown that Ŷ (q) is almost always full

rank. Thus one cannot speak about its nullspace but rather one wants to

identify a perturbed multipath subspace, which we will still refer to as the

multipath subspace. This subspace can be determined by identifying a gap

among singular values. Let σ̂i denote the singular values of Ŷ (q). If singular

values satisfy the inequality

σ̂1 ≥ · · · ≥ σ̂p−q >> σ̂p−q+1 ≥ · · · ≥ σ̂p.

we say that there is a gap (or break) in the spectrum between σ̂p−q and σ̂p−q+1.

Now the right singular vectors of Ŷ (q) corresponding to singular values to the

right of the gap span the multipath subspace of Ŷ (q). The gap allows for

the estimation of the dimension of the nullspace of noise free Y (q). Once the

dimension is established, redundant columns of Ŷ (q) are removed resulting in

Ŷ (1). The approximate channel ĝ is obtained as the right singular vector v2L

of Ŷ (1) associated with its smallest singular value σ̂2L.

There is a number of techniques to find the gap in the spectrum. Among

others the most often mantioned are
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(AIC) Akaike Information Criterion [1], [10], selects k which minimizes

AIC(k) = −2(p − k)N log
G(σ̂k+1, ..., σ̂p)

A(σ̂k+1, ..., σ̂p)
+ 2k(2p − k)

where G and A are the geometric and arithmetic means, respectively.

(MDL) Minimum Description Length [7], [10], select k which minimizes

MDL(k) = −(p − k)N log
G(σ̂k+1, ..., σ̂p)

A(σ̂k+1, ..., σ̂p)
+

1

2
k(2p − k) log N

where G and A are the geometric and arithmetic means, respectively.

(CA) Canonical angles [5] criterion select k which minimizes

ca(k) =











σ̂2
k+1

σ̂2
k
−2σ̂2

k+1

if
√

3σ̂k+1 ≤ σ̂k

1 otherwise

(GAP) Singular values ratio test selects k which maximizes sr(k) = σ̂k

σ̂k+1

(DR) Difference of ratios test [9] selects k which maximizes dr(k),

dr(k) =
σ̂k+2

σ̂k+1
− σ̂k+1

σ̂k

Some of these techniques were evaluated in [5]. It was shown in [5] that

estimates of the dimension of the nullspace obtained from the distribution

of eigenvalues (or singular values) are often inaccurate. This is caused by

the presence of noise and small number of available samples. For example, a

typical performance of the GAP test is illustrated in Figure 2.

When the signal-to-noise ratio SNR is high, Figure 2(a), the GAP test
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correctly estimates the dimension of the nullspace. For low SNR, Figure 2(b),

the test fails completely. This happens because singular values of the noisy

data matrix can move as much as the norm ||E|| of the noise matrix E. Thus

if the largest ratio of consecutive singular values for noise free data is found

among small singular values then addition of noise can significantly decrease

this ratio.

3 Joint order and channel estimation from sin-

gular vectors

Instead of, or in addition to, trying to identify a gap between singular values

one can explore the information embedded in the right singular vectors. The

reason for this is that the matrix Y is block Toeplitz.

3.1 Noisless case

Consider first the noiseless case. Suppose that the system matrix Y (1) = Y

has one dimensional null space and that g(1) = [gT
1 , gT

2 ]T is its basis vector, as

illustrated in (4),

Y (1)g(1) =

























y21 0 0 −y11 0 0

y22 y21 0 −y12 −y11 0

y23 y22 y21 −y13 −y12 −y11

0 y23 y22 0 −y13 −y12

0 0 y23 0 0 −y13































g1

g2






= 0 (4)
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Suppose a zero is appended to each gi and define g(2) as the concatenation of

such extended vectors, g(2) = [gT
1 , 0 , gT

2 , 0]T . Suppose further that the matrix

Y (1) is extended to Y (2) by adding to it a zero row and next adding circularly

shifted copies of extended by zeros vectors y1 and of y2, see (5),

Y (2) =

































y21 0 0 0 −y11 0 0 0

y22 y21 0 0 −y12 −y11 0 0

y23 y22 y21 0 −y13 −y12 −y11 0

0 y23 y22 y21 0 −y13 −y12 −y11

0 0 y23 y22 0 0 −y13 −y12

0 0 0 y23 0 0 0 −y13

































. (5)

It has been shown in [6] that the nullspace of Y (2) is spanned by two vector,

g(2) and and its circularly shifted copy [0 , gT
1 , 0 , gT

2 ]T ,

Y (2)



















g1 0

0 g1

g2 0

0 g2



















= Y
(2)
2 G2 = 0.

In analogous way we can create matrix Y (q) by adding (q − 1) zero rows to

Y (1) and next by appending such obtained matrix with q − 1 circularly shifted

copies of extended with zeros vectors yi. The nullspace of Y (q) will be spanned

by the vector g(q) = [gT
1 , 0, . . . , gT

2 , 0, . . . , 0]T and q−1 of its circularly shifted

copies. It is convenient to collect all these shifted vectors into the matrix Gq.

The space spanned by columns of Gq the multipath subspace. We will say that

columns of Gq form the fundamental basis for the multipath subspace of Y (q).

10



Recall that this multipath subspace is also spanned by the q right singular

vectors Vq = [vp−q+1, ..., vp] of Y (q) corresponding to the q zero singular values

of Y (q).

Figure 3 illustrates these unstructured and structure basis for the nullspace

of Y (q).

As columns of Vq, Figure 3(a), and columns of Gq, Figure 3(b), span the

same subspace, there exists a nonsigular matrix L such that, [3]

VqL = Gq.

That matrix L can be found by first postmultiplying Vq by an orthogonal

transformation Qq which transforms Vq into an upper trapezoidal matrix Wq =

VqQq. The next step is to apply Gaussian elimination to columns of Wq to zero

all elements above the main diagonal. This process is illustrated in Figure 4.

Let the Gaussian elimination matrix be Rq. Then the elimination process

results in a matrix Fq which has the structure shown in (6)

Fq = VqQqRq =















































f1 0 · · · 0

× f2
...

...
. . .

× × fq

h1 × ×
... h2

...

...
. . . ×

0 0 0 hq















































(6)

11



where fi and hi are vectors of the same dimension and ×’s are some other

entries.

Under mild conditions [6], [8] one can show that the fundamental basis Gq

is unique and hence we must have that Fq = Gq. Thus f1 = . . . = fq = g1,

h1 = . . . = hq = g2, and ×’s are all zeros. This observation allows us to find the

channel length and channel coefficients when the dimension q of the nullspace

is not know. A possible strategy is described in next.

Remark. The fact that the multipath subspace has a structured basis

was also exploited in [2] in the context of MIMO communication channels.

However there the SVD is not computed but rather a Levinson-type algorithm

is used in conjunction with the finite alphabet property of the signals.

3.2 Noisy case

We now consider the case when the received signal is contaminated by noise.

Suppose we collected N samples of the received signals ŷ1 and ŷ2 and con-

structed a (N +k−1)×2k data matrix Ŷ as in (5). Suppose that Ŷ = Ŷ (q) for

some q ∈ [Dmin , Dmax] with Dmin and Dmax known. Thus Ŷ has a multipath

subspace of dimension q. We would like to find that dimension q.

The first step is to compute the SVD decomposition of Ŷ , Ŷ = UΣV H

where V = [v1 , v2 , . . . , v2k]. Now we consider subspaces Vi spanned by the

columns of Vi = [v2k−i+1, ..., v2k]. Clearly the noise subspace is spanned by the

columns of one of these Vi’s.

Say that Vi for i = q spans the noise subspace. Then there should exist a

basis of this subspace which when slightly perturbed will exhibit the structure
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of fundamental basis. Thus we want to check whether there exists a linear

transformation L̂ of Vi such that

ViL = Ĝ(i) =















































f̂1 0 · · · 0

× f̂2
...

...
. . .

× · · · × f̂i

ĥ1 × ×
... ĥ2

...

...
. . . ×

0 0 0 ĥi















































(7)

where all f̂j are approximately the same, all ĥj are approximately the same,

and elements denoted by × are small relatively to f̂j’s and ĥj ’s.

As in the case of known multipath dimension, we first postmultiply Vi by an

orthogonal transformation Qi which transforms Vi into the upper trapezoidal

form Wi. Next we apply Gaussian elimination to columns of Wi to zero all

elements above the main diagonal. Then we check whether the elimination

results in a matrix Fi which has the structure similar to the one shown in (7).

In the noisy case neither ĥj’s nor f̂j’s will be equal. Similarly ×’s will not

be zeros. Thus we need a criterion for selecting the most likely, in some sense,

dimension i for which Ĝ(i) is an approximate fundamental basis.

We propose the following two measures. In theory, all hj ’ and fj ’ should

be equal. With the presence of noise we can check the degree of correlation

among these vectors. This can be done, for example by, computing the SVD

of the matrices H(i) = [ĥ1, . . . , ĥi] and F (i) = [f̂1, . . . , f̂i]. The index i is then
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selected as the one for each the ratio sdH(i) and sdF (i) of the largest to the

second largest singular value of H(i) and F (i), respectively, is maximal.

Similarly, in theory the residual matrix E(i) = Y [(G(i))T (H(i))T ]T should

be a zero matrix. In the presence of noise we select the index i so the residual

error ei = ||E(i)|| is the smallest possible.

Finally, we we can select i as a function of ei, sdH(i) and sdF (i). In nu-

merous simulations we found out that the following heuristic criterion predicts

well the dimension of the multipath subspace. Namely, we choose i which

minimizes the function ǫ(i),

ǫ(i) = ||E(i)|| +
(

1

sdH(i)

) 1

2

+

(

1

sdF (i)

) 1

2

,

over all i ∈ [Dmin , Dmax].

A typical performance of this criterion is illustrated in Figure 5 where

Dmin = 4, Dmax = 12 and q = 6. There, our criteria selected the correct

dimension of the multipath subspace which was i = 6. The basis of this mul-

tipath subspace is the one shown in Figure 5(c). Note however that the basis

for i = 9 shown in Figure 5(f) can also be consider as a potential candidate.

Note that once q is selected, one not only have an estimate of the filter

length but also an estimate of the filter coefficients. These can be obtained

from the columns of the matrix Ĝq.

In the next section we present experimental results comparing eigenvalues

based methods with the method described in this section.
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4 Simulations

Performance of all six methods was tested for the following synthetic data. A

pure sinusoid was generated in MATLAB by the code:

t = (0:.001:sdur);

y = sin(2*pi*fr*t);

where sdur determined the duration of the signal and fr its frequency.

Two multipath vector g1 and g2 were chosen as

g1 = [1 0 0 1 0 1 0 1];

g2 = [1 0 1 0 1 0 0 1];

Two multipath signals were obtained as

z1 = conv(g1,y);

z2 = conv(g2,y);

Next white noise was added to the multipath signals

y1 = awgn(z1,snr);

y2 = awgn(z2,snr);

where snr = 20,24,...,32. The data matrix Y was built from noisy

multipath signals. Its size was overestimated so the corresponding noiseless

multipoath space had dimension K where K = 4,6,8,...,14.

For each SNR level snr and for each dimension K of the nullspace all five

eigenvalue based algorithms from Section 2.2 and the singular vectors based
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algorithm from Section 3.2 were executed 100 times each. The fractions of

correct estimations by the algorithms are ploted in Figure 6.

Graphs in Figure 7 show the average filter length computed by different

algorithms over 100 tests for each dimension of the nullspace.

The experiments suggest that the method which takes into the account the

information contained in the singular vectors often outperforms the methods

that take into the account the information contained in the singular values

only. This is specially true in the cases when the dimension of the multipath

subspace is low and signal-to-noise ratio is low as well.

5 Conclusions

Spectral techniques like SVD may fail in presence of noise. It often helps to

exploit additional information presents in the structured data. In the case

of the multichannel estimation problem considered in this paper the relevant

structure is that of a block circulant data matrix whose nullspace is spanned

by columns of a circulant matrix. We have shown that the circulant structure

of the nullspace helps in determination of its dimension.

We have also shown that in the case of the multidimensional multipath

subspace it is not necessary to first reduce its dimension as is done in methods

based on eigenvalue information only. Rather, the desired multipath solution

can be identified directly from the basis of the subspace spanned by a set of

circularly shifted null vectors.

That basis was extracted from the singular vector basis of the overex-

teneded multipath subspace by creating a linear transformation from the sin-
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gular vector basis to the fundamental basis.

We proposed a criterion for filter length estimation and designed a linear

transformation from the singular vectors basis to the fundamental basis that

worked well in numerous Monte Carlo simulations. However it is not clear

whether our criteria are the best possible. It is plausible that our techniques

can be improved. This is a subject of current investigation.

We considered the case of two receivers. However, our technique can be

easily generalized to the case of any number of receivers. Adding more receivers

improves estimations at the cost of more computations. The trade-offs between

the quality of estimation and the cost is another subject of ongoing research.
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FIGURE 3. Result of MATLAB’s (a) imagesc(V) and (b) imagesc(G).
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FIGURE 4. Basis obtained form (a) SVD, (b) after QR factorization, (c)

after LU decomposition.
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FIGURE 5. Candidate basis vectors examined by the algorithm.
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FIGURE 7. Avarage filter length.
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